Showing 91 - 100 of 410
Prediction in time series models with a trend requires reliable estimation of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10009783567
Recent results on so-called SEMIFAR models introduced by Beran (1997) are discussed. The nonparametric deterministic trend is estimated by a kernel method. The differencing and fractional differencing parameters as well as the autoregressive coefficients are estimated by an approximate maximum...
Persistent link: https://www.econbiz.de/10009793259
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. For selecting the bandwidth, the proposal of Beran and Feng (1999) based...
Persistent link: https://www.econbiz.de/10011543365
This paper focuses on developing a new data-driven procedure for decomposing seasonal time series based on local regression. Formula of the asymptotic optimal bandwidth hA in the current context is given. Methods for estimating the unknowns in hA are investigated. A data-driven algorithm for...
Persistent link: https://www.econbiz.de/10011543779
In this paper a robust data-driven procedure for decomposing seasonal time series based on a generalized Berlin Method (BV, Berliner Verfahren) as proposed by Heiler and Michels (1994) is discussed. The basic robust algorithm used here is an adaptation of the LOWESS (LOcally Weighted Scatterplot...
Persistent link: https://www.econbiz.de/10011543797
Persistent link: https://www.econbiz.de/10011543839
The distinction between stationarity, difference stationarity, deterministic trends as well as between short- and long-range dependence has a major impact on statistical conclusions, such as confidence intervals for population quantities or point and interval forecasts. In this paper, recent...
Persistent link: https://www.econbiz.de/10011543928
Prediction in time series models with a trend requires reliable estimation of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10011544323
This paper considers a class of semiparametric models being the sum of a non-parametric trend function g and a FARIMA-GARCH error process. Estimation of ĝ (v), the vth derivative of g, by local polynomial fitting is investigated. The focus is on the derivation of the asymptotic normality of ĝ...
Persistent link: https://www.econbiz.de/10011544427
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. Convergence and asymptotic properties of the proposed algorithms are...
Persistent link: https://www.econbiz.de/10011544511