Showing 1 - 10 of 166
The object of this paper is to produce non-parametric maximum likelihood estimates of forecast distributions in a general non-Gaussian, non-linear state space setting. The transition densities that define the evolution of the dynamic state process are represented in parametric form, but the...
Persistent link: https://www.econbiz.de/10010679031
The object of this paper is to produce non-parametric maximum likelihood estimates of forecast distributions in a general non-Gaussian, non-linear state space setting. The transition densities that define the evolution of the dynamic state process are represented in parametric form, but the...
Persistent link: https://www.econbiz.de/10009291983
The object of this paper is to produce non-parametric maximum likelihood estimates of forecast distributions in a general non-Gaussian, non-linear state space setting. The transition densities that define the evolution of the dynamic state process are represented in parametric form, but the...
Persistent link: https://www.econbiz.de/10009406369
Persistent link: https://www.econbiz.de/10009787038
Optimal probabilistic forecasts of integer-valued random variables are derived. The optimality is achieved by estimating the forecast distribution nonparametrically over a given broad model class and proving asymptotic efficiency in that setting. The ideas are demonstrated within the context of...
Persistent link: https://www.econbiz.de/10005003387
A new approach to inference in state space models is proposed, based on approximate Bayesian computation (ABC). ABC avoids evaluation of the likelihood function by matching observed summary statistics with statistics computed from data simulated from the true process; exact inference being...
Persistent link: https://www.econbiz.de/10010958938
A Bayesian approach to option pricing is presented in which posterior inference about the underlying returns process is conducted implicitly via observed option prices. A range of models allowing for conditional leptokurtosis, skewness and time-varying volatility in returns are considered, with...
Persistent link: https://www.econbiz.de/10005161534
The impact of parameterisation on the simulation efficiency of Bayesian Markov chain Monte Carlo (MCMC) algorithms for two non-Gaussian state space models is examined. Specifically, focus is given to particular forms of the stochastic conditional duration (SCD) model and the stochastic...
Persistent link: https://www.econbiz.de/10005172230
Persistent link: https://www.econbiz.de/10005172518
A Bayesian Markov Chain Monte Carlo methodology is developed for estimating the stochastic conditional duration model. The conditional mean of durations between trades is modelled as a latent stochastic process, with the conditional distribution of durations having positive support. The sampling...
Persistent link: https://www.econbiz.de/10005149083