Showing 41 - 50 of 62,663
There is increasing demand for models of time-varying and non-Gaussian dependencies for mul- tivariate time-series. Available models suffer from the curse of dimensionality or restrictive assumptions on the parameters and the distribution. A promising class of models are the hierarchical...
Persistent link: https://www.econbiz.de/10010270704
In this article, we present new ideas concerning Non-Gaussian Component Analysis (NGCA). We use the structural assumption that a high-dimensional random vector X can be represented as a sum of two components - a lowdimensional signal S and a noise component N. We show that this assumption...
Persistent link: https://www.econbiz.de/10010270736
Understanding the dynamics of high dimensional non-normal dependency structure is a challenging task. This research aims at attacking this problem by building up a hidden Markov model (HMM) for Hierarchical Archimedean Copulae (HAC), where the HAC represent a wide class of models for high...
Persistent link: https://www.econbiz.de/10010281541
In this article, we present new ideas concerning Non-Gaussian Component Analysis (NGCA). We use the structural assumption that a high-dimensional random vector X can be represented as a sum of two components - a lowdimensional signal S and a noise component N. We show that this assumption...
Persistent link: https://www.econbiz.de/10003973622
There is increasing demand for models of time-varying and non-Gaussian dependencies for mul- tivariate time-series. Available models suffer from the curse of dimensionality or restrictive assumptions on the parameters and the distribution. A promising class of models are the hierarchical...
Persistent link: https://www.econbiz.de/10003953027
An intensive and still growing body of research focuses on estimating a portfolio’s Value-at-Risk.Depending on both the degree of non-linearity of the instruments comprised in the portfolio and thewillingness to make restrictive assumptions on the underlying statistical distributions, a...
Persistent link: https://www.econbiz.de/10011301159
Understanding the dynamics of high dimensional non-normal dependency structure is a challenging task. This research aims at attacking this problem by building up a hidden Markov model (HMM) for Hierarchical Archimedean Copulae (HAC), where the HAC represent a wide class of models for high...
Persistent link: https://www.econbiz.de/10009412716
We present two methods based on functional principal component analysis (FPCA) for the estimation of smooth derivatives of a sample of random functions, which are observed in a more than one-dimensional domain.We apply eigenvalue decomposition to a) the dual covariance matrix of the derivatives,...
Persistent link: https://www.econbiz.de/10011530075
Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to...
Persistent link: https://www.econbiz.de/10011505901
Consider a random sample in the max-domain of attraction of a multivariate extreme value distribution such that the dependence structure of the attractor belongs to a parametric model. A new estimator for the unknown parameter is defined as the value that minimises the distance between a vector...
Persistent link: https://www.econbiz.de/10013130231