Showing 11 - 20 of 37,817
Persistent link: https://www.econbiz.de/10011337990
Tucker's well-known combinatorial lemma states that for any given symmetric triangulation of the n-dimensional unit cube and for any integer labeling that assigns to each vertex of the triangulation a label from the set f§1;§2; ¢ ¢ ¢ ;§ng with the property that antipodal vertices on the...
Persistent link: https://www.econbiz.de/10011091211
In this paper we study the existence problem of a zero point of a function defined on a finite set of elements of the integer lattice Zn of the n-dimensional Euclidean space IRn. It is assumed that the set is integrally convex, which implies that the convex hull of the set can be subdivided in...
Persistent link: https://www.econbiz.de/10011091637
This discussion paper resulted in a publication in 'Mathematical Programming', ser. A, 2006, 108, 127-134. <P>
Persistent link: https://www.econbiz.de/10011256768
This discussion paper resulted in a publication in the 'Journal of Optimization Theory and Applications', 2010, 144, 391-407. <p> Tucker's well-known combinatorial lemma states that for any given symmetric triangulation of the n-dimensional unit cube and for any integer labeling that assigns to...</p>
Persistent link: https://www.econbiz.de/10011257467
We study the existence problem of a zero point of a function defined on a finite set of elements of the integer lattice of the n-dimensional Euclidean space. It is assumed that the set is integrally convex, which implies that the convex hull of the set can be subdivided in simplices such that...
Persistent link: https://www.econbiz.de/10004964458
<I>Abstract</I><p> See document.<p>
Persistent link: https://www.econbiz.de/10005209454
Tucker's well-known combinatorial lemma states that for any given symmetric triangulation of the n-dimensional unit cube and for any integer labeling that assigns to each vertex of the triangulation a label from the set {1,2,...n,-1,-2,....-n} with the property that antipodal vertices on the...
Persistent link: https://www.econbiz.de/10005144416
In this paper an algorithm is proposed to find an integral solution of (nonlinear) complementarity problems. The algorithm starts with a nonnegative integral point and generates a unique sequence of adjacent integral simplices of varying dimension. Conditions are stated under which the algorithm...
Persistent link: https://www.econbiz.de/10010325585
Persistent link: https://www.econbiz.de/10003807167