Showing 101 - 110 of 1,254
Persistent link: https://www.econbiz.de/10009521858
We develop efficient simulation techniques for Bayesian inference on switching GARCH models. Our contribution to existing literature is manifold. First, we discuss different multi-move sampling techniques for Markov Switching (MS) state space models with particular attention to MS-GARCH models....
Persistent link: https://www.econbiz.de/10013088788
This paper proposes a Bayesian, graph-based approach to identification in vector autoregressive (VAR) models. In our Bayesian graphical VAR (BGVAR) model, the contemporaneous and temporal causal structures of the structural VAR model are represented by two different graphs. We also provide an...
Persistent link: https://www.econbiz.de/10013064757
In high-dimensional vector autoregressive (VAR) models, it is natural to have large number of predictors relative to the number of observations, and a lack of efficiency in estimation and forecasting. In this context, model selection is a difficult issue and standard procedures may often be...
Persistent link: https://www.econbiz.de/10012904383
We propose a Markov Switching Graphical Seemingly Unrelated Regression (MS-GSUR) model to investigate time-varying systemic risk based on a range of multi-factor asset pricing models. Methodologically, we develop a Markov Chain Monte Carlo (MCMC) scheme in which latent states are identified on...
Persistent link: https://www.econbiz.de/10012904580
Seemingly unrelated regression (SUR) models are useful in studying the interactions among different variables. In a high dimensional setting or when applied to large panel of time series, these models require a large number of parameters to be estimated and suffer of inferential problems.To...
Persistent link: https://www.econbiz.de/10012968298
This paper considers a sparsity approach for inference in large vector autoregressive (VAR) models. The approach is based on a Bayesian procedure and a graphical representation of VAR models. We discuss a Markov chain Monte Carlo algorithm for sparse graph selection, parameter estimation, and...
Persistent link: https://www.econbiz.de/10013005518
The purpose of this paper is the construction of an early warning indicator for systemic risk using entropy measures. The analysis is based on the cross-sectional distribution of marginal systemic risk measures such as Marginal Expected Shortfall, Delta CoVaR and network connectedness. These...
Persistent link: https://www.econbiz.de/10013022947
We propose a new Bayesian Markov switching regression model for multi-dimensional arrays (tensors) of binary time series. We assume a zero-inflated logit dynamics with time-varying parameters and apply it to multi-layer temporal networks. The original contribution is threefold. First, in order...
Persistent link: https://www.econbiz.de/10012917228
In time series analysis, latent factors are often introduced to model the heterogeneous time evolution of the observed processes. The presence of unobserved components makes the maximum likelihood estimation method more difficult to apply. A Bayesian approach can sometimes be preferable since it...
Persistent link: https://www.econbiz.de/10012712875