Showing 1 - 10 of 241
Empirical processes for non ergodic data are investigated under uniform distance. Some CLTs, both uniform and non uniform, are proved. In particular, conditions for Bn = n^(1/2) (µn - bn) and Cn = n^(1/2) (µn - an) to converge in distribution are given, where µn is the empirical measure, an...
Persistent link: https://www.econbiz.de/10010335295
Empirical processes for non ergodic data are investigated under uniform distance. Some CLTs, both uniform and non uniform, are proved. In particular, conditions for Bn = n^(1/2) (µn - bn) and Cn = n^(1/2) (µn - an) to converge in distribution are given, where µn is the empirical measure, an...
Persistent link: https://www.econbiz.de/10009651022
n - a
Persistent link: https://www.econbiz.de/10010335274
Persistent link: https://www.econbiz.de/10010343849
. Some of them do not require exchangeability, but hold under the weaker assumption that (Xn) is conditionally identically …
Persistent link: https://www.econbiz.de/10009651074
This paper deals with empirical processes of the type Cn(B) = n^(1/2) {µn(B) - P(Xn+1 in B
Persistent link: https://www.econbiz.de/10010335326
This paper deals with empirical processes of the type Cn(B) = n^(1/2) {µn(B) - P(Xn+1 in B | X1, . . . ,Xn)} , where (Xn) is a sequence of random variables and µn = (1/n)SUM(i=1,..,n) d(Xi) the empirical measure. Conditions for supB|Cn(B)| to converge stably (in particular, in distribution)...
Persistent link: https://www.econbiz.de/10010259915
This paper deals with empirical processes of the type Cn(B) = n^(1/2) {µn(B) - P(Xn+1 in B | X1, . . . ,Xn)} , where (Xn) is a sequence of random variables and µn = (1/n)SUM(i=1,..,n) d(Xi) the empirical measure. Conditions for supB|Cn(B)| to converge stably (in particular, in distribution)...
Persistent link: https://www.econbiz.de/10009651795
Persistent link: https://www.econbiz.de/10010358477
In this paper we present two new tests for the parametric form of the variance function in difusion processes dXt = b(t;Xt)+ó(t;Xt)dWt: Our approach is based on two stochastic processes of the integrated volatility. We prove weak convergence of these processes to centered processes whose...
Persistent link: https://www.econbiz.de/10010296714