Showing 1,031 - 1,040 of 1,181
Persistent link: https://www.econbiz.de/10008899335
Persistent link: https://www.econbiz.de/10012882019
A novel approach to inference for a specific region of the predictive distribution is introduced. An important domain of application is accurate prediction of financial risk measures, where the area of interest is the left tail of the predictive density of logreturns. Our proposed approach...
Persistent link: https://www.econbiz.de/10012864459
We explore a new approach to the forecasting of macroeconomic variables based on a dynamic factor state space analysis. Key economic variables are modeled jointly with principal components from a large time series panel of macroeconomic indicators using a multivariate unobserved components time...
Persistent link: https://www.econbiz.de/10014170346
We study whether and when parameter-driven time-varying parameter models lead to forecasting gains over observation-driven models. We consider dynamic count, intensity, duration, volatility and copula models, including new specifications that have not been studied earlier in the literature. In...
Persistent link: https://www.econbiz.de/10014172098
This paper looks at unobserved components models and examines the implied weighting patterns for signal extraction. There are three main themes. The first is the implications of correlated disturbances driving the components, especially those cases in which the correlation is perfect. The second...
Persistent link: https://www.econbiz.de/10014173391
We develop a systematic framework for the joint modelling of returns and multiple daily realised measures. We assume a linear state space representation for the log realised measures, which are noisy and biased estimates of the log daily integrated variance, at least due to Jensen's inequality....
Persistent link: https://www.econbiz.de/10014177448
The analysis of non-Gaussian time series using state space models is considered from both classical and Bayesian perspectives. The treatment in both cases is based on simulation using importance sampling and antithetic variables; Monte Carlo Markov chain methods are not employed. Non-Gaussian...
Persistent link: https://www.econbiz.de/10014192074
The basic structural time series model has been designed for the modelling and forecasting of seasonal economic time series. In this paper we explore a generalisation of the basic structural time series model in which the time-varying trigonometric terms associated with different seasonal...
Persistent link: https://www.econbiz.de/10014198312
Many seasonal macroeconomic time series are subject to changes in their means and variances over a long time horizon. In this paper we propose a general treatment for the modelling of time-varying features in economic time series. We show that time series models with mean and variance functions...
Persistent link: https://www.econbiz.de/10014198316