Showing 11 - 20 of 852
We consider an observation-driven location model where the unobserved location variable is modeled as a random walk process and where the error variable is from a mixture of normal distributions. The mixed normal distribution can approximate many continuous error distributions accurately. We...
Persistent link: https://www.econbiz.de/10012797266
This paper introduces a novel simulation-based filtering method for general state space models. It allows for the computation of time-varying conditional means, quantiles, and modes, but also for the prediction of latent variables in general. The method relies on generating artificial samples of...
Persistent link: https://www.econbiz.de/10014321789
We analyze the role of industrial and non-industrial production sectors in the US economy by adopting a novel multilevel factor model. The proposed model is suitable for high-dimensional panels of economic time series and allows for interdependence structures across multiple sectors. The...
Persistent link: https://www.econbiz.de/10014321794
This paper proposes a novel time-series model with a non-stationary stochastic trend, locally explosive mixed causal non-causal dynamics and fat-tailed innovations. The model allows for a description of financial time-series that is consistent with financial theory, for a decomposition of the...
Persistent link: https://www.econbiz.de/10014469608
This paper considers a stochastic volatility model featuring an asymmetric stable error distribution and a novel way of accounting for the leverage effect. We adopt simulation-based methods to address key challenges in parameter estimation, the filtering of time-varying volatility, and...
Persistent link: https://www.econbiz.de/10014469776
The equivalence of the Beveridge-Nelson decomposition and the trend-cycle decomposition is well established. In this paper we argue that this equivalence is almost immediate when a Gaussian score-driven location model is considered. We also provide a natural extension towards heavy-tailed...
Persistent link: https://www.econbiz.de/10014469831
We investigate the information theoretic optimality properties of the score function of the predictive likelihood as a device to update parameters in observation driven time-varying parameter models. The results provide a new theoretical justification for the class of generalized autoregressive...
Persistent link: https://www.econbiz.de/10010377213
We study the strong consistency and asymptotic normality of the maximum likelihood estimator for a class of time series models driven by the score function of the predictive likelihood. This class of nonlinear dynamic models includes both new and existing observation driven time series models....
Persistent link: https://www.econbiz.de/10010377233
We propose a new Markov switching model with time varying probabilities for the transitions. The novelty of our model is that the transition probabilities evolve over time by means of an observation driven model. The innovation of the time varying probability is generated by the score of the...
Persistent link: https://www.econbiz.de/10010377237
A new model for time-varying spatial dependencies is introduced. It forms an extension to the popular spatial lag model and can be estimated conveniently by maximum likelihood. The spatial dependence parameter is assumed to follow a generalized autoregressive score (GAS) process. The theoretical...
Persistent link: https://www.econbiz.de/10010396754