Showing 91 - 100 of 33,879
In the presence of heteroscedasticity and autocorrelation of unknown forms, the covariance matrix of the parameter estimator is often estimated using a nonparametric kernel method that involves a lag truncation parameter. Depending on whether this lag truncation parameter is specified to grow at...
Persistent link: https://www.econbiz.de/10010730135
In this paper, a semiparametric single-index model is investigated. The link function is allowed to be unbounded and has unbounded support that answers a pending issue in the literature. Meanwhile, the link function is treated as a point in an infinitely many dimensional function space which...
Persistent link: https://www.econbiz.de/10012980605
Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many...
Persistent link: https://www.econbiz.de/10014178700
We propose a general two-step estimation method for the structural parameters of popular semiparametric Markovian discrete choice models that include a class of Markovian Games and allow for continuous observable state space. The estimation procedure is simple as it directly generalizes the...
Persistent link: https://www.econbiz.de/10014192735
The Two-Stage Least Squares (2-SLS) is a well known econometric technique used to estimate the parameters of a multi-equation (or simultaneous equations) econometric model when errors across the equations are not correlated and the equation(s) concerned is (are) over-identified or exactly...
Persistent link: https://www.econbiz.de/10014216212
This paper develops a theory of high and low (extremal) quantile regression: the linear models, estimation, and inference. In particular, the models coherently combine the convenient, flexible linearity with the extreme-value-theoretic restrictions on tails and the general heteroscedasticity...
Persistent link: https://www.econbiz.de/10014129636
We propose a flexible GARCH-type model for the prediction of volatility in financial time series. The approach relies on the idea of using multivariate B-splines of lagged observations and volatilities. Estimation of such a B-spline basis expansion is constructed within the likelihood framework...
Persistent link: https://www.econbiz.de/10014051065
For estimating regression function we can use many proceedings. In this paper, we have chosen to apply scaling functions to the estimation of regression functions. When one knows many bivariate date with the values of two variables, in the goal to express a correlation between the two variables...
Persistent link: https://www.econbiz.de/10014051848
This article looks at the theory and empirics of extremal quantiles in economics, in particular value-at-risk. The theory of extremes has gone through remarkable developments and produced valuable empirical findings in the last 20 years. In the discussion, we put a particular focus on...
Persistent link: https://www.econbiz.de/10014053485
Employing power kernels suggested in earlier work by the authors (2003), this paper shows how to refine methods of robust inference on the mean in a time series that rely on families of untruncated kernel estimates of the long-run parameters. The new methods improve the size properties of...
Persistent link: https://www.econbiz.de/10014064311