Ibragimov, Rustam; Sharakhmetov, Shaturgun - Department of Economics, Harvard University - 2002
Let $\xi_1, \ldots, \xi_n$ be independent random variables with ${\bf E}\xi_i=0,$ ${\bf E}|\xi_i|^t<\infty$, $t>2$, $i=1,\ldots, n,$ and let $S_n=\sum_{i=1}^n \xi_i.$ In the present paper we prove that the exact constant ${\overline C}(2m)$ in the Rosenthal inequality $$ {\bf E}|S_n|^t\le C(t) \max...</\infty$,>