Showing 71 - 80 of 596
Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to...
Persistent link: https://www.econbiz.de/10011755324
Using a Bayesian framework this paper provides a multivariate combination approach to prediction based on a distributional state space representation of predictive densities from alternative models. In the proposed approach the model set can be incomplete. Several multivariate time-varying...
Persistent link: https://www.econbiz.de/10012143763
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by...
Persistent link: https://www.econbiz.de/10012143792
Interactions between the eurozone and US booms and busts and among major eurozone economies are analyzed by introducing a panel Markov-switching VAR model well suitable for a multi-country cyclical analysis. The model accommodates changes in low and high data frequencies and endogenous...
Persistent link: https://www.econbiz.de/10012143832
This paper presents the MATLAB package DeCo (density combination) which is based on the paper by Billio, Casarin, Ravazzolo, and van Dijk (2013) where a constructive Bayesian approach is presented for combining predictive densities originating from different models or other sources of...
Persistent link: https://www.econbiz.de/10012143849
We introduce a Bayesian approach to predictive density calibration and combination that accounts for parameter uncertainty and model set incompleteness through the use of random calibration functionals and random combination weights. Building on the work of Ranjan and Gneiting (2010) and...
Persistent link: https://www.econbiz.de/10012143859
A Bayesian nonparametric predictive model is introduced to construct time-varying weighted combinations of a large set of predictive densities. A clustering mechanism allocates these densities into a smaller number of mutually exclusive subsets. Using properties of the Aitchinson's geometry of...
Persistent link: https://www.econbiz.de/10012143868
A flexible forecast density combination approach is introduced that can deal with large data sets. It extends the mixture of experts approach by allowing for model set incompleteness and dynamic learning of combination weights. A dimension reduction step is introduced using a sequential...
Persistent link: https://www.econbiz.de/10012143944
Persistent link: https://www.econbiz.de/10003412060
Persistent link: https://www.econbiz.de/10003376740