Showing 51 - 60 of 66,376
Persistent link: https://www.econbiz.de/10011635045
This paper aims to investigate a Bayesian sampling approach to parameter estimation in the GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This mixture density...
Persistent link: https://www.econbiz.de/10010860418
This paper provides a unified simulation-based Bayesian and non-Bayesian analysis of correlated binary data using the multivariate probit model. The posterior distribution is simulated by Markov chain Monte Carlo methods, and maximum likelihood estimates are obtained by a Markov chain Monte...
Persistent link: https://www.econbiz.de/10005556368
In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihood-based framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating...
Persistent link: https://www.econbiz.de/10005556396
Markov models introduce persistence in the mixture distribution. In time series analysis, the mixture components relate to different persistent states characterizing the state-specific time series process. Model specification is discussed in a general form. Emphasis is put on the functional form...
Persistent link: https://www.econbiz.de/10011629990
Markov models introduce persistence in the mixture distribution. In time series analysis, the mixture components relate to different persistent states characterizing the state-specific time series process. Model specification is discussed in a general form. Emphasis is put on the functional form...
Persistent link: https://www.econbiz.de/10011538665
We propose a new multivariate volatility model where the conditional distribution of a vector time series is given by a mixture of multivariate normal distributions. Each of these distributions is allowed to have a time-varying covariance matrix. The process can be globally covariance-stationary...
Persistent link: https://www.econbiz.de/10004984765
We propose a new multivariate volatility model where the conditional distribution of a vector time series is given by a mixture of multivariate normal distributions. Each of these distributions is allowed to have a time-varying covariance matrix. The process can be globally covariance-...
Persistent link: https://www.econbiz.de/10005065329
This paper is a survey of existing estimation methods for pharmacokinetic/pharmacodynamic (PK/PD) models based on stochastic differential equations (SDEs). Most parametric estimation methods proposed for SDEs require high frequency data and are often poorly suited for PK/PD data which are...
Persistent link: https://www.econbiz.de/10010708218
In systems of variables with a specified or already identified cointegrating rank, stationarity of component variates can be tested by a simple restriction test. The implied decision is often in conflict with the outcome of unit root tests on the same variables. Using a framework of Bayes...
Persistent link: https://www.econbiz.de/10010292762