Showing 41 - 50 of 558
We consider a general sample selection model where unit and item nonresponse simultaneously affect a regression relationship of interest, and both types of nonresponse are potentially correlated. We estimate both parametric and semiparametric specifications of the model. The parametric...
Persistent link: https://www.econbiz.de/10014052435
We extend the results of De Luca et al. (2021) to inference for linear regression models based on weighted-average least squares (WALS), a frequentist model averaging approach with a Bayesian flavor.We concentrate on inference about a single focus parameter, interpreted as the causal effect of a...
Persistent link: https://www.econbiz.de/10013228440
Persistent link: https://www.econbiz.de/10009270623
A common problem in applied regression analysis is that covariate values may be missing for some observations but imputed values may be available. This situation generates a trade-off between bias and precision: the complete cases are often disarmingly few, but replacing the missing observations...
Persistent link: https://www.econbiz.de/10013070713
A common problem in applied regression analysis is that covariate values may be missing for some observations but imputed values may be available. This situation generates a trade-off between bias and precision: the complete cases are often disarmingly few, but replacing the missing observations...
Persistent link: https://www.econbiz.de/10010640491
Persistent link: https://www.econbiz.de/10008997616
A common problem in applied regression analysis is that covariate values may be missing for some observations but imputed values may be available. This situation generates a trade-off between bias and precision: the complete cases are often disarmingly few, but replacing the missing observations...
Persistent link: https://www.econbiz.de/10008479247
A common problem in applied regression analysis is that covariate values may be missing for some observations but imputed values may be available. This situation generates a trade-off between bias and precision: the complete cases are often disarmingly few, but replacing the missing observations...
Persistent link: https://www.econbiz.de/10010821074
A common problem in applied regression analysis is that covariate values may be missing for some observations but imputed values may be available. This situation generates a trade-off between bias and precision: the complete cases are often disarmingly few, but replacing the missing observations...
Persistent link: https://www.econbiz.de/10009018662
Many statistical and econometric learning methods rely on Bayesian ideas, often applied or reinterpreted in a frequentist setting. Two leading examples are shrinkage estimators and model averaging estimators, such as weighted-average least squares (WALS). In many instances, the accuracy of these...
Persistent link: https://www.econbiz.de/10012233977