Showing 71 - 80 of 77,254
In this paper I have used copula functions to forecast the Value-at-Risk (VaR) of an equally weighted portfolio comprising a small cap stock index and a large cap stock index for the oil and gas industry. The following empirical questions have been analyzed: (i) are there nonnormalities in the...
Persistent link: https://www.econbiz.de/10005012145
General-to-Specific (GETS) modelling has witnessed major advances over the last decade thanks to the automation of multi-path GETS specification search. However, several scholars have argued that the estimation complexity associated with financial models constitutes an obstacle to multi-path...
Persistent link: https://www.econbiz.de/10008543188
Risk management technology applied to high dimensional portfolios needs simple and fast methods for calculation of Value-at-Risk (VaR). The multivariate normal framework provides a simple off-the-shelf methodology but lacks the heavy tailed distributional properties that are observed in data. A...
Persistent link: https://www.econbiz.de/10010319191
This paper estimates macroeconomic credit risk of banks¡¦ loan portfolio based on a class of mixture vector autoregressive models. Such class of models can differentiate distributions of default rates and macroeconomic conditions for different market situations and can capture their dynamics...
Persistent link: https://www.econbiz.de/10005690177
Risk management technology applied to high dimensional portfolios needs simple and fast methods for calculation of Value-at-Risk (VaR). The multivariate normal framework provides a simple off-the-shelf methodology but lacks the heavy tailed distributional properties that are observed in data. A...
Persistent link: https://www.econbiz.de/10005207944
Correlation models, such as Constant Conditional Correlation (CCC) GARCH model or Dynamic Conditional Correlation (DCC) GARCH model, play a crucial role in forecasting Value-at-Risk (VaR) or Expected Shortfall (ES). The additional inclusion of constant correlation tests into correlation models...
Persistent link: https://www.econbiz.de/10013171617
In this paper, we investigate the value-at-risk predictions of four major precious metals (gold, silver, platinum, and palladium) with long memory volatility models, namely FIGARCH, FIAPARCH and HYGARCH, under normal and student-t innovations’ distributions. For these analyses, we consider...
Persistent link: https://www.econbiz.de/10011260522
In this paper, we investigate the value-at-risk predictions of four major precious metals (gold, silver, platinum, and palladium) with non-linear long memory volatility models, namely FIGARCH, FIAPARCH and HYGARCH, under normal and Student-t innovations’ distributions. For these analyses, we...
Persistent link: https://www.econbiz.de/10011117740
Motivated by the Basel 3 regulations, recent studies have considered joint forecasts of Value-at-Risk and Expected Shortfall. A large family of scoring functions can be used to evaluate forecast performance in this context. However, little intuitive or empirical guidance is currently available,...
Persistent link: https://www.econbiz.de/10011663466
The CCC-GARCH model, and its dynamic correlation extensions, form the most important model class for multivariate asset returns. For multivariate density and portfolio risk forecasting, a drawback of these models is the underlying assumption of Gaussianity. This paper considers the so-called...
Persistent link: https://www.econbiz.de/10014236254