Showing 11 - 20 of 8,005
In this paper we present a new approach for constructing subgradient schemes for different types of nonsmooth problems with convex structure. Our methods are primaldual since they are always able to generate a feasible approximation to the optimum of an appropriately formulated dual problem....
Persistent link: https://www.econbiz.de/10005043237
In this paper we derive effciency estimates of the regularized Newton's method as applied to constrained convex minimization problems and to variational inequalities. We study a one- step Newton's method and its multistep accelerated version, which converges on smooth convex problems as O( 1 k3...
Persistent link: https://www.econbiz.de/10005043350
In this paper we develop a technique for constructing self-concordant barriers for convex cones. We start from a simple proof for a variant of standard result [1] on transformation of a -self-concordant barrier for a set into a self-concordant barrier for its conic hull with parameter (3.08 +...
Persistent link: https://www.econbiz.de/10005043444
In this paper we develop a new and efficient method for variational inequality with Lipschitz continuous strongly monotone operator. Our analysis is based on a new strongly convex merit function. We apply a variant of the developed scheme for solving quasivariational inequality. As a result, we...
Persistent link: https://www.econbiz.de/10005043714
In this paper we analyze several new methods for solving optimization problems with the objective function formed as a sum of two convex terms: one is smooth and given by a black-box oracle, and another is general but simple and its structure is known. Despite to the bad properties of the sum,...
Persistent link: https://www.econbiz.de/10005008277
In this paper we propose a new approach for constructing efficient schemes for nonsmooth convex optimization. It is based on a special smoothing technique, which can be applied to the functions with explicit max-structure. Our approach can be considered as an alternative to black-box...
Persistent link: https://www.econbiz.de/10005008345
In this paper we propose two new nonsymmetric primal-dual potential-reduction methods for conic problems. The methods are based on the primal-dual lifting [5]. This procedure allows to construct a strictly feasible primal-dual pair related by an exact scaling relation even if the cones are not...
Persistent link: https://www.econbiz.de/10005008570
In this paper we propose an accelerated version of the cubic regularization of Newton's method [6]. The original version, used for minimizing a convex function with Lipschitz-continuous Hessian, guarantees a global rate of convergence of order O(1/k exp.2), where k is the iteration counter. Our...
Persistent link: https://www.econbiz.de/10005065351
In this paper we analyze computational performance of dual trigonometric generating functions on some integer programming problems. We show that if the number of equality constraints is fixed, then this technique allows to solve the problems in time, which is polynomial in the dimension of the...
Persistent link: https://www.econbiz.de/10005065423
In this paper, we establish a local quadratic convergence of polynomial-time interior-point methods for general conic optimization problems. The main structural property used in our analysis is the logarithmic homogeneity of self-concordant barrier functions. We propose new path-following...
Persistent link: https://www.econbiz.de/10008550204