Showing 1 - 10 of 1,005
Several instance-based large-margin classi¯ers have recently been put forward in the literature: Support Hyperplanes, Nearest Convex Hull classifier, and Soft Nearest Neighbor. We examine those techniques from a common fit-versus-complexity framework and study the links be- tween them. Finally,...
Persistent link: https://www.econbiz.de/10010837721
Consider the classification task of assigning a test object to one of two or more possible groups, or classes. An intuitive way to proceed is to assign the object to that class, to which the distance is minimal. As a distance measure to a class, we propose here to use the distance to the convex...
Persistent link: https://www.econbiz.de/10010837724
A new classification method is proposed, called Support Hy- perplanes (SHs). To solve the binary classification task, SHs consider the set of all hyperplanes that do not make classification mistakes, referred to as semi-consistent hyperplanes. A test object is classified using that...
Persistent link: https://www.econbiz.de/10010837832
Support vector machines (SVM) are becoming increasingly popular for the prediction of a binary dependent variable. SVMs perform very well with respect to competing techniques. Often, the solution of an SVM is obtained by switching to the dual. In this paper, we stick to the primal support vector...
Persistent link: https://www.econbiz.de/10010837908
We propose to estimate the parameters of the Market Share Attraction Model (Cooper & Nakanishi, 1988; Fok & Franses, 2004) in a novel way by using a non-parametric technique for function estimation called Support Vector Regressions (SVR) (Vapnik, 1995; Smola, 1996). Traditionally, the parameters of the...
Persistent link: https://www.econbiz.de/10010731743
To minimize the primal support vector machine (SVM) problem, we propose to use iterative majorization. To do so, we propose to use it- erative majorization. To allow for nonlinearity of the predictors, we use (non)monotone spline transformations. An advantage over the usual ker- nel approach in...
Persistent link: https://www.econbiz.de/10010731825
This paper is concerned with time series forecasting in the presence of a large number of predictors. The results are of interest, for instance, in macroeconomic and financial forecasting where often many potential predictor variables are available. Most of the current forecast methods with many...
Persistent link: https://www.econbiz.de/10010837704
Generalized linear modelling (GLM) is a versatile technique, which may be viewed as a generalization of well-known techniques such as least squares regression, analysis of variance, loglinear modelling, and logistic regression. In may applications, low-order interaction (such as bivariate...
Persistent link: https://www.econbiz.de/10010837777
Macroeconomic forecasting is not an easy task, in particular if future growth rates are forecasted in real time. This paper compares various methods to predict the growth rate of US Industrial Production (IP) and of the Composite Coincident Index (CCI) of the Conference Board, over the coming...
Persistent link: https://www.econbiz.de/10010837778
Forecasting with many predictors is of interest, for instance, in macroeconomics and finance. This paper compares two methods for dealing with many predictors, that is, principal component regression (PCR) and principal covariate regression (PCovR). The forecast performance of these methods is...
Persistent link: https://www.econbiz.de/10010837815