Showing 1 - 10 of 1,289
Persistent link: https://www.econbiz.de/10009725619
This paper considers the problem of pricing American options when the dynamics of the underlying are driven by both stochastic volatility following a square root process as used by Heston (1993), and by a Poisson jump process as introduced by Merton (1976). Probability arguments are invoked to...
Persistent link: https://www.econbiz.de/10008492104
This paper presents a generalisation of McKean's free boundary value problem for American options by considering an American strangle position, where the early exercise of one side of the payoff will knock-out the out-of-the-money side. When attempting to evaluate the price of this American...
Persistent link: https://www.econbiz.de/10004984457
This paper surveys some of the literature on American option pricing, in particular the representations of McKean (1965), Kim (1990) and Carr, Jarrow and Myneni (1992). It is proposed that the approach regarding the problem as a free boundary value problem, and solving this via incomplete...
Persistent link: https://www.econbiz.de/10004984501
This paper considers the Fourier transform approach to derive the implicit integral equation for the price of an American call option in the case where the underlying asset follows a jump-diffusion process. Using the method of Jamshidian (1992), we demonstrate that the call option price is given...
Persistent link: https://www.econbiz.de/10004984546
In this paper we derive the implicit integral equation for the price of an American call option in the case where the underlying asset follows a jump-diffusion process. We extend McKean's incomplete Fourier transform approach to solve the free boundary problem under Merton's framework, with the...
Persistent link: https://www.econbiz.de/10004984551
This paper presents a numerical method for pricing American call options where the underlying asset price follows a jump-diffusion process. The method is based on the Fourier-Hermite series expansions of Chiarella, El-Hassan & Kucera (1999), which we extend to allow for Poisson jumps, in the...
Persistent link: https://www.econbiz.de/10004984580
This paper considers the problem of numerically evaluating American option prices when the dynamics of the underlying are driven by both stochastic volatility following the square root process of Heston (1993), and by a Poisson jump process of the type originally introduced by Merton (1976). We...
Persistent link: https://www.econbiz.de/10004987159
In this paper we consider the pricing of an American call option whose underlying asset dynamics evolve under the influence of two independent stochastic volatility processes of the Heston (1993) type. We derive the associated partial differential equation (PDE) of the option price using hedging...
Persistent link: https://www.econbiz.de/10009357760
Persistent link: https://www.econbiz.de/10008749199