Showing 11 - 20 of 7,547
This paper uses an infinite hidden Markov model (IHMM) to analyze U.S. inflation dynamics with a particular focus on the persistence of inflation. The IHMM is a Bayesian nonparametric approach to modeling structural breaks. It allows for an unknown number of breakpoints and is a flexible and...
Persistent link: https://www.econbiz.de/10008509928
This paper uses an infinite hidden Markov model (IHMM) to analyze U.S. inflation dynamics with a particular focus on the persistence of inflation. The IHMM is a Bayesian nonparametric approach to modeling structural breaks. It allows for an unknown number of breakpoints and is a flexible and...
Persistent link: https://www.econbiz.de/10008487525
In this paper we extend the parametric, asymmetric, stochastic volatility model (ASV), where returns are correlated with volatility, by flexibly modeling the bivariate distribution of the return and volatility innovations nonparametrically. Its novelty is in modeling the joint, conditional,...
Persistent link: https://www.econbiz.de/10010555040
In this paper we extend the parametric, asymmetric, stochastic volatility model (ASV), where returns are correlated with volatility, by flexibly modeling the bivariate distribution of the return and volatility innovations nonparametrically. Its novelty is in modeling the joint, conditional,...
Persistent link: https://www.econbiz.de/10010556277
This paper considers Bayesian nonparametric estimation of conditional densities by countable mixtures of location-scale densities with covariate dependent mixing probabilities. The mixing probabilities are modeled in two ways. First, we consider finite covariate dependent mixture models, in...
Persistent link: https://www.econbiz.de/10009401962
This paper proposes an infinite dimension Markov switching model to accommodate regime switching and structural break dynamics or a combination of both in a Bayesian framework. Two parallel hierarchical structures, one governing the transition probabilities and another governing the parameters...
Persistent link: https://www.econbiz.de/10009147927
This introduction to Bayesian statistics presents the main concepts as well as the principal reasons advocated in favour of a Bayesian modelling. We cover the various approaches to prior determination as well as the basis asymptotic arguments in favour of using Bayes estimators. The testing...
Persistent link: https://www.econbiz.de/10010708281
We consider nonparametric estimation of a mixed discrete-continuous distribution under anisotropic smoothness conditions and possibly increasing number of support points for the discrete part of the distribution. For these settings, we derive lower bounds on the estimation rates in the total...
Persistent link: https://www.econbiz.de/10011895828
In this paper, we use Bayesian nonparametric learning to estimate the skill of actively managed mutual funds and also to estimate the population distribution for this skill. A nonparametric hierarchical prior, where the hyperprior distribution is unknown and modeled with a Dirichlet process...
Persistent link: https://www.econbiz.de/10011980531
We propose a new nonlinear classification method based on a Bayesian "sum-of-trees" model, the Bayesian Additive Classification Tree (BACT), whichextends the Bayesian Additive Regression Tree (BART) method into the classification context. Like BART, the BACT is a Bayesian nonparametric...
Persistent link: https://www.econbiz.de/10005860755