Showing 81 - 90 of 1,043
We develop a new direct approach to approximating suprema of general empirical processes by a sequence of suprema of Gaussian processes, without taking the route of approximating empirical processes themselves in the sup-norm. We prove an abstract approximation theorem that is applicable to a...
Persistent link: https://www.econbiz.de/10009692046
Modern construction of uniform confidence bands for non-parametric densities (and other functions) often relies on the classical Smirnov-Bickel-Rosenblatt (SBR) condition; see, for example, Giné and Nickl (2010). This condition requires the existence of a limit distribution of an extreme value...
Persistent link: https://www.econbiz.de/10010226449
This paper considers the problem of testing many moment inequalities where the number of moment inequalities, denoted by p, is possibly much larger than the sample size n. There are variety of economic applications where the problem of testing many moment in- equalities appears; a notable...
Persistent link: https://www.econbiz.de/10010226521
We derive a Gaussian approximation result for the maximum of a sum of high dimensional random vectors. Specifically, we establish conditions under which the distribution of the maximum is approximated by that of the maximum of a sum of the Gaussian random vectors with the same covariance...
Persistent link: https://www.econbiz.de/10010227470
We develop a new direct approach to approximating suprema of general empirical processes by a sequence of suprema of Gaussian processes, without taking the route of approximating whole empirical processes in the supremum norm. We prove an abstract approximation theorem that is applicable to a...
Persistent link: https://www.econbiz.de/10010227479
Slepian and Sudakov-Fernique type inequalities, which com- pare expectations of maxima of Gaussian random vectors under certain restrictions on the covariance matrices, play an important role in probability theory, especially in empirical process and extreme value theories. Here we give explicit...
Persistent link: https://www.econbiz.de/10010227495
We derive strong approximations to the supremum of the non-centered empirical process indexed by a possibly unbounded VC-type class of functions by the suprema of the Gaussian and bootstrap processes. The bounds of these approximations are non-asymptotic, which allows us to work with classes of...
Persistent link: https://www.econbiz.de/10011524717
In this paper, we derive central limit and bootstrap theorems for probabilities that centered high-dimensional vector sums hit rectangles and sparsely convex sets. Specifically, we derive Gaussian and bootstrap approximations for the probabilities that a root-n rescaled sample average of Xi is...
Persistent link: https://www.econbiz.de/10011525777
Slepian and Sudakov-Fernique type inequalities, which compare expectations of maxima of Gaussian random vectors under certain restrictions on the covariance matrices, play an important role in probability theory, especially in empirical process and extreme value theories. Here we give explicit...
Persistent link: https://www.econbiz.de/10011525793
This paper develops a new direct approach to approximating suprema of general empirical processes by a sequence of suprema of Gaussian processes, without taking the route of approximating whole empirical processes in the sup-norm. We prove an abstract approximation theorem applicable to a wide...
Persistent link: https://www.econbiz.de/10011525808