Showing 1 - 10 of 1,074
The decision tree algorithm for monotone classification presented in [4, 10] requires strictly monotone data sets. This paper addresses the problem of noise due to violation of the monotonicity constraints and proposes a modification of the algorithm to handle noisy data. It also presents...
Persistent link: https://www.econbiz.de/10010730978
The bankruptcy prediction problem can be considered an or dinal classification problem. The classical theory of Rough Sets describes objects by discrete attributes, and does not take into account the order- ing of the attributes values. This paper proposes a modification of the Rough Set...
Persistent link: https://www.econbiz.de/10010731259
This paper focuses on the problem of monotone decision trees from the point of view of the multicriteria decision aid methodology (MCDA). By taking into account the preferences of the decision maker, an attempt is made to bring closer similar research within machine learning and MCDA. The paper...
Persistent link: https://www.econbiz.de/10010731315
Modular decomposition is a thoroughly investigated topic in many areas such as switching theory, reliability theory, game theory and graph theory. We propose an O(mn)-algorithm for the recognition of a modular set of a monotone Boolean function f with m prime implicants and n variables. Using...
Persistent link: https://www.econbiz.de/10010731537
Due to the present-day memory sizes, a memory-resident database has become a practical option. Consequently, new methods designed to mining in such databases are desirable. In the case of disk-resident databases, breadth-first search methods are commonly used. We propose a new algorithm, based...
Persistent link: https://www.econbiz.de/10010837634
We consider generalized monotone functions f: X -- {0,1} defined for an arbitrary binary relation = on X by the property x = y implies f(x) = f(y). These include the standard monotone (or positive) Boolean functions, regular Boolean functions and other interesting functions as special cases. It...
Persistent link: https://www.econbiz.de/10011067465
We propose to estimate the parameters of the Market Share Attraction Model (Cooper & Nakanishi, 1988; Fok & Franses, 2004) in a novel way by using a non-parametric technique for function estimation called Support Vector Regressions (SVR) (Vapnik, 1995; Smola, 1996). Traditionally, the parameters of the...
Persistent link: https://www.econbiz.de/10010731743
Marketing problems often involve inary classification of customers into ``buyers'' versus ``non-buyers'' or ``prefers brand A'' versus ``prefers brand B''. These cases require binary classification models such as logistic regression, linear, and quadratic discriminant analysis. A promising...
Persistent link: https://www.econbiz.de/10010731745
To minimize the primal support vector machine (SVM) problem, we propose to use iterative majorization. To do so, we propose to use it- erative majorization. To allow for nonlinearity of the predictors, we use (non)monotone spline transformations. An advantage over the usual ker- nel approach in...
Persistent link: https://www.econbiz.de/10010731825
Several instance-based large-margin classi¯ers have recently been put forward in the literature: Support Hyperplanes, Nearest Convex Hull classifier, and Soft Nearest Neighbor. We examine those techniques from a common fit-versus-complexity framework and study the links be- tween them. Finally,...
Persistent link: https://www.econbiz.de/10010837721