Showing 11 - 20 of 933
In this paper a symmetric primal-dual transformation for positive semidefinite programming is proposed. For standard SDP problems, after this symmetric transformation the primal variables and the dual slacks become identical. In the context of linear programming, existence of such a primal-dual...
Persistent link: https://www.econbiz.de/10010837969
In this paper we consider properties of the central path and the analytic center of the optimal face in the context of parametric linear programming. We first show that if the right-hand side vector of a standard linear program is perturbed, then the analytic center of the optimal face is...
Persistent link: https://www.econbiz.de/10011149270
How to initialize an algorithm to solve an optimization problem is of great theoretical and practical importance. In the simplex method for linear programming this issue is resolved by either the two-phase approach or using the so-called big M technique. In the interior point method, there is a...
Persistent link: https://www.econbiz.de/10008484081
This paper establishes the superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming under the assumptions that the semidefinite program has a strictly complementary primal-dual optimal solution and that the size of the central path neighborhood...
Persistent link: https://www.econbiz.de/10008484087
This paper considers the problem of minimizing a linear function over the intersection of an affine space with a closed convex cone. In the first half of the paper, we give a detailed study of duality properties of this problem and present examples to illustrate these properties. In particular,...
Persistent link: https://www.econbiz.de/10008484094
This paper presents a unified study of duality properties for the problem of minimizing a linear function over the intersection of an affine space with a convex cone in finite dimension. Existing duality results are carefully surveyed and some new duality properties are established. Examples are...
Persistent link: https://www.econbiz.de/10008484096
In this paper we study a class of quadratic maximization problems and their semidefinite programming (SDP) relaxation. For a special subclass of the problems we show that the SDP relaxation provides an exact optimal solution. Another subclass, which is ${\\cal NP}$-hard, guarantees that the SDP...
Persistent link: https://www.econbiz.de/10010731579
We study stochastic linear--quadratic (LQ) optimal control problems over an infinite horizon, allowing the cost matrices to be indefinite. We develop a systematic approach based on semidefinite programming (SDP). A central issue is the stability of the feedback control; and we show this can be...
Persistent link: https://www.econbiz.de/10010731580
In this note we give a short and easy proof of the equivalence of Hakimi's one-median problem and the k-server-facility-loss median problem as discussed by Chiu and Larson in Computer and Operation Research. The proof makes only use of a stochastic monotonicity result for birth and death...
Persistent link: https://www.econbiz.de/10010731602
There is no abstract of this report
Persistent link: https://www.econbiz.de/10010731629