Showing 91 - 100 of 87,206
We propose uniformly valid inference on volatility with noisy high-frequency data. We assume the observed transaction price follows a continuous-time Itô-semimartingale, contaminated by a discrete-time moving-average noise process associated with the arrival of trades. We estimate the quadratic...
Persistent link: https://www.econbiz.de/10012900993
This paper constructs an estimator for the number of common factors in a setting where both the sampling frequency and the number of variables increase. Empirically, we document that the covariance matrix of a large portfolio of US equities is well represented by a low rank common structure with...
Persistent link: https://www.econbiz.de/10013003349
We propose a new methodology to estimate the empirical pricing kernel implied from option data. In contrast to most of the studies in the literature that use an indirect approach, i.e. first estimating the physical and risk-neutral densities and obtaining the pricing kernel in a second step, we...
Persistent link: https://www.econbiz.de/10013108080
We investigate estimators of factor-model-based large covariance (and precision) matrices using high-frequency data, which are asynchronous and potentially contaminated by the market microstructure noise. Our estimation strategies rely on the pre-averaging method with refresh time to solve the...
Persistent link: https://www.econbiz.de/10012962663
We develop tests that help assess whether a high frequency data sample can be treated as reasonably free of market microstructure noise at a given sampling frequency for the purpose of implementing high frequency volatility and other estimators. The tests are based on the Hausman principle of...
Persistent link: https://www.econbiz.de/10012969870
In this study, we derive the joint asymptotic distributions of functionals of quantile estimators (the non-parametric sample quantile and the parametric location-scale quantile) and functionals of measure of dispersion estimators (the sample standard deviation, sample mean absolute deviation,...
Persistent link: https://www.econbiz.de/10012862252
This paper proposes a novel covariance estimator via a machine learning approach when both the sampling frequency and covariance dimension are large. Assuming that a large covariance matrix can be decomposed into low rank and sparse components, our method simultaneously provides a consistent...
Persistent link: https://www.econbiz.de/10012867396
In this paper, we develop econometric tools to analyze the integrated volatility (IV) of the efficient price and the dynamic properties of microstructure noise in high-frequency data under general dependent noise. We first develop consistent estimators of the variance and autocovariances of...
Persistent link: https://www.econbiz.de/10012860921
For typical sample sizes occurring in economic and financial applications, the squared bias of estimators for the memory parameter is small relative to the variance. Smoothing is therefore a suitable way to improve the performance in terms of the mean squared error. However, in an analysis of...
Persistent link: https://www.econbiz.de/10012312096
We consider a nonparametric time series regression model. Our framework allows precise estimation of betas without the usual assumption of betas being piecewise constant. This property makes our framework particularly suitable to study individual stocks. We provide an inference framework for all...
Persistent link: https://www.econbiz.de/10012894411