Showing 1 - 10 of 43
A new lumped conceptual model based on the Soil Conservation Service Curve Number (SCS-CN) concept has been proposed in this paper for long-term hydrologic simulation and it has been tested using the data of five catchments from different climatic and geographic settings of India. When compared...
Persistent link: https://www.econbiz.de/10010998194
This paper presents a rain duration-dependent procedure based on the popular Soil Conservation Service Curve Number (SCS-CN) methodology for computation of direct surface runoff from long duration rains. Curve numbers are derived from long-term daily rainfall-runoff data, and antecedent moisture...
Persistent link: https://www.econbiz.de/10010794081
This paper presents a quantitative evaluation of the existing Soil Conservation Service Curve Number (SCS-CN) model, its variants, and the modified Mishra and Singh (MS) models for their suitability to particular land use, soil type and combination thereof using a large set of rainfall-runoff...
Persistent link: https://www.econbiz.de/10010847376
The general soil conservation service curve number (SCS-CN)-based Mishra and Singh (Mishra and Singh, 1999, J. Hydrologic. Eng. ASCE, 4(3), 257–264) model and its eight variants were investigated for their field applicability using a large set of rainfall-runoff events, derived from a number...
Persistent link: https://www.econbiz.de/10010997636
The available antecedent moisture condition (AMC)-dependent runoff curve number (CN) (SCS, National Engineering Handbook, Supplement A, Section 4, Chapter 10, Soil Conservation Service, USDA, Washington, DC, 1956) conversion formulae due to Sobhani (M.S. Thesis, Utah State University, Logan, UT,...
Persistent link: https://www.econbiz.de/10010997893
This paper presents a technique to derive the unit impulse response functions (UIRF) used for determination of unit hydrograph by employing the Z-transform technique to the response function derived from the Auto Regressive Moving Average (ARMA) process of order (p, q). The proposed approach was...
Persistent link: https://www.econbiz.de/10010998226
Persistent link: https://www.econbiz.de/10003060465
Persistent link: https://www.econbiz.de/10013106368
Land use–land cover (LULC) change in space and time is the main cause behind the changing hydrological processes, ecosystem and environment in urban catchments. In the present study, the main focus was on evaluation of spatial and temporal variation of land use and land cover change in a major...
Persistent link: https://www.econbiz.de/10011151641
In this paper, a rainfall runoff model for coastal urban watershed considering the effects of tidal variations using Finite Element Method (FEM) is presented. Overland flow is modeled using the mass balance equation considering the impervious character of the urban watershed. Storm water flow...
Persistent link: https://www.econbiz.de/10010794181