Showing 31 - 40 of 216
Persistent link: https://www.econbiz.de/10012878194
Markowitz (1952) portfolio selection requires estimates of (i) the vector of expected returns and (ii) the covariance matrix of returns. Many proposals to address the first question exist already. This paper addresses the second question. We promote a new nonlinear shrinkage estimator of the...
Persistent link: https://www.econbiz.de/10010243453
Covariance matrix estimation and principal component analysis (PCA) are two cornerstones of multivariate analysis. Classic textbook solutions perform poorly when the dimension of the data is of a magnitude similar to the sample size, or even larger. In such settings, there is a common remedy for...
Persistent link: https://www.econbiz.de/10009747823
Markowitz (1952) portfolio selection requires an estimator of the covariance matrix of returns. To address this problem, we promote a nonlinear shrinkage estimator that is more flexible than previous linear shrinkage estimators and has just the right number of free parameters (that is, the...
Persistent link: https://www.econbiz.de/10011598583
This paper introduces a nonlinear shrinkage estimator of the covariance matrix that does not require recovering the population eigenvalues first. We estimate the sample spectral density and its Hilbert transform directly by smoothing the sample eigenvalues with a variable-bandwidth kernel....
Persistent link: https://www.econbiz.de/10011729044
This paper constructs a new estimator for large covariance matrices by drawing a bridge between the classic Stein (1975) estimator in finite samples and recent progress under large-dimensional asymptotics. The estimator keeps the eigenvectors of the sample covariance matrix and applies shrinkage...
Persistent link: https://www.econbiz.de/10012390074
Many econometric and data-science applications require a reliable estimate of the covariance matrix, such as Markowitz portfolio selection. When the number of variables is of the same magnitude as the number of observations, this constitutes a difficult estimation problem; the sample covariance...
Persistent link: https://www.econbiz.de/10012165719
This paper constructs a new estimator for large covariance matrices by drawing a bridge between the classic Stein (1975) estimator in finite samples and recent progress under large-dimensional asymptotics. Our formula is quadratic: it has two shrinkage targets weighted by quadratic functions of...
Persistent link: https://www.econbiz.de/10012123359
Many econometric and data-science applications require a reliable estimate of the covariance matrix, such as Markowitz portfolio selection. When the number of variables is of the same magnitude as the number of observations, this constitutes a difficult estimation problem; the sample covariance...
Persistent link: https://www.econbiz.de/10012018920
Markowitz portfolio selection is a cornerstone in finance, both in academia and in the industry. Most academic studies either ignore transaction costs or account for them in a way that is both unrealistic and suboptimal by (i) assuming transaction costs to be constant across stocks and (ii)...
Persistent link: https://www.econbiz.de/10013441507