Showing 11 - 20 of 23
Ultra-high thermal intensity colorless distributed combustion has been examined for methane and methane diluted with air, nitrogen or carbon dioxide gas and liquid fuel (ethanol) burning in air at a fixed thermal load. Fuel was diluted with inert gases and air to simulate the combustion of low...
Persistent link: https://www.econbiz.de/10010576241
This paper examines the development of ultra-low emission colorless distributed combustion (CDC) for gas turbines, operating at thermal intensity in the range of 5–453MW/m3atm. Higher thermal intensity combustors are desirable for increased performance with minimal increase in hardware costs...
Persistent link: https://www.econbiz.de/10010702461
Colorless distributed combustion (CDC) investigated here is focused on gas turbine combustion applications due to its significant benefits for, much reduced NOx emissions and noise reduction, and significantly improved pattern factor. CDC is characterized by distributed reaction zone of...
Persistent link: https://www.econbiz.de/10008914026
Colorless distributed combustion (CDC) has been demonstrated to provide ultra-low emission of NOx and CO, improved pattern factor and reduced combustion noise in high intensity gas turbine combustors. The key feature to achieve CDC is the controlled flow distribution, reduce ignition delay, and...
Persistent link: https://www.econbiz.de/10008916591
High temperature steam gasification is one of the most promising, viable, effective and efficient technology for clean conversion of wastes to energy with minimal or negligible environmental impact. Gasification can add value by transforming the waste to low or medium heating value fuel which...
Persistent link: https://www.econbiz.de/10008918737
New innovative advanced combustion design methodology for gas turbine applications is presented that is focused on the quest towards zero emissions. The new design methodology is called colorless distributed combustion (CDC) and is significantly different from the currently used methodology. In...
Persistent link: https://www.econbiz.de/10008919867
In this paper reverse flow modes of colorless distributed combustion (CDC) have been investigated for application to gas turbine combustors. Rapid mixing between the injected fuel and hot oxidizer has been carefully explored for spontaneous ignition of the mixture to achieve distributed...
Persistent link: https://www.econbiz.de/10008829880
Colorless distributed combustion (CDC) has been shown to provide significant improvement in gas turbine combustor performance. Colorless distributed combustion with swirl is investigated here to develop ultra-low emissions of NO and CO, and significantly improved pattern factor. Experimental...
Persistent link: https://www.econbiz.de/10011040411
Distributed combustion has been shown to provide significant improvements of gas turbine combustors performance including uniform thermal field in the entire combustion chamber (improved pattern factor), ultra-low emission of NOx and CO, low noise, enhanced stability and higher efficiency. The...
Persistent link: https://www.econbiz.de/10011040439
The results obtained from the combustion behavior of propane over platinum and rhodium catalysts in a meso-scale heat recirculating combustor are presented. The extinction limits, conversion, product selectivity/yield, and activation energy using the two catalysts were compared in an effort to...
Persistent link: https://www.econbiz.de/10011040786