Showing 21 - 30 of 3,146
This paper introduces a statistical technique, Support Vector Machines (SVM), which is considered by the Deutsche Bundesbank as an alternative for company rating. A special attention is paid to the features of the SVM which provide a higher accuracy of company classification into solvent and...
Persistent link: https://www.econbiz.de/10010265023
Graphical data representation is an important tool for model selection in bankruptcy analysis since the problem is highly non-linear and its numerical representation is much less transparent. In classical rating models a convenient representation of ratings in a closed form is possible reducing...
Persistent link: https://www.econbiz.de/10010274115
This paper proposes a rating methodology that is based on a non-linear classification method, the support vector machine, and a non-parametric technique for mapping rating scores into probabilities of default. We give an introduction to underlying statistical models and represent the results of...
Persistent link: https://www.econbiz.de/10010275865
The goal of this work is to introduce one of the most successful among recently developed statistical techniques - the support vector machine (SVM) - to the field of corporate bankruptcy analysis. The main emphasis is done on implementing SVMs for analysing predictors in the form of financial...
Persistent link: https://www.econbiz.de/10010276551
This paper proposes a rating methodology that is based on a non-linear classification method, the support vector machine, and a non-parametric technique for mapping rating scores into probabilities of default. We give an introduction to underlying statistical models and represent the results of...
Persistent link: https://www.econbiz.de/10010295937
In this study, a new discriminative learning framework, called soft margin estimation (SME), is proposed for estimating the parameters of continuous density hidden Markov models (HMMs). The proposed method makes direct use of the successful ideas of margin in support vector machines to improve...
Persistent link: https://www.econbiz.de/10009475793
We present a novel approach for measuring democracy, which enables a very detailed and sensitive index. This method is based on Support Vector Machines, a mathematical algorithm for pattern recognition. Our implementation evaluates 188 countries in the period between 1981 and 2011. The Support...
Persistent link: https://www.econbiz.de/10010516301
Evidence from a novel measure of democracy (SVMDI) based on Support Vector Machines highlights a robust positive relationship between democracy and economic growth. We argue that the ambiguity in recent studies can be traced back to the neglect of the information in the equation in levels and...
Persistent link: https://www.econbiz.de/10010516302
We present a novel approach for measuring democracy based on Support Vector Machines, a mathematical algorithm for pattern recognition. The Support Vector Machines Democracy Index (SVMDI) is continuously on the 0-1-interval and enables a very detailed measurement of democracy for 188 countries...
Persistent link: https://www.econbiz.de/10011431182
This paper studies the training of support vector machine (SVM) classifiers with respect to the minimax and Neyman-Pearson criteria. In principle, these criteria can be optimized in a straightforward way using a cost-sensitive SVM. In practice, however, because these criteria require especially...
Persistent link: https://www.econbiz.de/10009441975