Showing 1 - 10 of 1,207
Covariance matrix estimation and principal component analysis (PCA) are two cornerstones of multivariate analysis. Classic textbook solutions perform poorly when the dimension of the data is of a magnitude similar to the sample size, or even larger. In such settings, there is a common remedy for...
Persistent link: https://www.econbiz.de/10010817245
The mispricing of marketing performance indicators (such as brand equity, churn, and customer satisfaction) is an important element of arguments in favor of the financial value of marketing investments. Evidence for mispricing can be assessed by examining whether or not portfolios composed of...
Persistent link: https://www.econbiz.de/10010817270
Applied researchers often test for the difference of the variance of two investment strategies; in particular, when the investment strategies under consideration aim to implement the global minimum variance portfolio. A popular tool to this end is the F-test for the equality of variances....
Persistent link: https://www.econbiz.de/10008679202
Many statistical applications require an estimate of a covariance matrix and/or its inverse. When the matrix dimension is large compared to the sample size, which happens frequently, the sample covariance matrix is known to perform poorly and may suffer from ill-conditioning. There already...
Persistent link: https://www.econbiz.de/10008679203
This paper introduces a new method for deriving covariance matrix estimators that are decision-theoretically optimal. The key is to employ large-dimensional asymptotics: the matrix dimension and the sample size go to infinity together, with their ratio converging to a finite, nonzero limit. As...
Persistent link: https://www.econbiz.de/10011082366
There has been a recent debate in the marketing literature concerning the possible mispricing of customer satisfaction. While earlier studies claim that portfolios with attractive out-of-sample properties can be formed by loading on stocks whose firms enjoy high customer satisfaction, later...
Persistent link: https://www.econbiz.de/10010331922
This paper introduces a new method for deriving covariance matrix estimators that are decision-theoretically optimal. The key is to employ large-dimensional asymptotics: the matrix dimension and the sample size go to infinity together, with their ratio converging to a finite, nonzero limit. As...
Persistent link: https://www.econbiz.de/10010332044
The mispricing of marketing performance indicators (such as brand equity, churn, and customer satisfaction) is an important element of arguments in favor of the financial value of marketing investments. Evidence for mispricing can be assessed by examining whether or not portfolios composed of...
Persistent link: https://www.econbiz.de/10010333106
This paper introduces a new method for deriving covariance matrix estimators that are decision-theoretically optimal within a class of nonlinear shrinkage estimators. The key is to employ large-dimensional asymptotics: the matrix dimension and the sample size go to infinity together, with their...
Persistent link: https://www.econbiz.de/10011663161
Markowitz (1952) portfolio selection requires an estimator of the covariance matrix of returns. To address this problem, we promote a nonlinear shrinkage estimator that is more flexible than previous linear shrinkage estimators and has just the right number of free parameters (that is, the...
Persistent link: https://www.econbiz.de/10011663163