Showing 1 - 10 of 32,323
The relationship between risk and return is one of the most studied topics in finance. The majority of the literature is based on a linear, parametric relationship between expected returns and conditional volatility. However, there is no theoretical justification for the relationship to be...
Persistent link: https://www.econbiz.de/10015240036
This paper proposes a Bayesian nonparametric modeling approach for the return distribution in multivariate GARCH models. In contrast to the parametric literature the return distribution can display general forms of asymmetry and thick tails. An infinite mixture of multivariate normals is given a...
Persistent link: https://www.econbiz.de/10010850125
This paper extends the existing fully parametric Bayesian literature on stochastic volatility to allow for more general return distributions. Instead of specifying a particular distribution for the return innovation, nonparametric Bayesian methods are used to flexibly model the skewness and...
Persistent link: https://www.econbiz.de/10005771682
In this paper we extend the parametric, asymmetric, stochastic volatility model (ASV), where returns are correlated with volatility, by flexibly modeling the bivariate distribution of the return and volatility innovations nonparametrically. Its novelty is in modeling the joint, conditional,...
Persistent link: https://www.econbiz.de/10010556277
We develop an ordinary least squares estimator of the long memory parameter from a fractionally integrated process that is an alternative to the Geweke Porter-Hudak estimator. Using the wavelet transform from a fractionally integrated process, we establish a log-linear relationship between the...
Persistent link: https://www.econbiz.de/10011112113
Econometric techniques to estimate output supply systems, factor demand systems and consumer demand systems have often required estimating a nonlinear system of equations that have an additive error structure when written in reduced form. To calculate the ML estimate's covariance matrix of this...
Persistent link: https://www.econbiz.de/10011112318
This paper introduces several new Bayesian nonparametric models suitable for capturing the unknown conditional distribution of realized covariance (RCOV) matrices. Existing dynamic Wishart models are extended to countably infinite mixture models of Wishart and inverse-Wishart distributions. In...
Persistent link: https://www.econbiz.de/10011110553
This paper proposes a flexible way of modeling dynamic heterogeneous covariance breakdowns in multivariate GARCH (MGARCH) models. During periods of normal market activity, volatility dynamics are governed by an MGARCH specification. A covariance breakdown is any significant temporary deviation...
Persistent link: https://www.econbiz.de/10011111792
The time-series dynamics of short-term interest rates are important as they are a key input into pricing models of the term structure of interest rates. In this paper we extend popular discrete time short-rate models to include Markov switching of infinite dimension. This is a Bayesian...
Persistent link: https://www.econbiz.de/10011185700
Econometric techniques to estimate output supply systems, factor demand systems and consumer demand systems have often required estimating a nonlinear system of equations that have an additive error structure when written in reduced form. To calculate the ML estimate's covariance matrix of this...
Persistent link: https://www.econbiz.de/10015232211