Showing 61 - 70 of 58,414
The purpose of this paper is to present a neuro-fuzzy approach of financial distress pre-warning model appropriate for risk supervisors, investors and policy makers. We examine a sample of the financial institutions and electronic companies of Taiwan Security Exchange (TSE) from 2002 through...
Persistent link: https://www.econbiz.de/10013138750
In this paper we present the neuro-fuzzy technology for the prediction of economic crisis of USA economy. Our findings support ANFIS models to traditional discrete choice models of Probit and Logit, indicating that the last models are not very useful for forecasting purposes. We have developed a...
Persistent link: https://www.econbiz.de/10013138751
In this paper we present the Radial Basis Neural Network Function. We examine some simple numerical examples of time-series in economics and finance. The forecasting performance is significant superior, especially in financial time-series, to traditional econometric modeling indicating that...
Persistent link: https://www.econbiz.de/10013138753
In this paper discrete choice models, Logit and Probit are examined in order to predict the economic recession or expansion periods in USA. Additionally we propose an adaptive neurofuzzy inference system with triangular and Gaussian membership functions and genetic algorithms training...
Persistent link: https://www.econbiz.de/10013138754
Predictions of asset returns and volatilities are heavily discussed and analyzed in the finance research literature. In this paper, we compare linear and nonlinear predictions for stock- and bond index returns and their covariance matrix. We show in-sample and out-of-sample prediction accuracy...
Persistent link: https://www.econbiz.de/10013116144
Stock markets proved to be statistically predictable on an economically interesting scale over the past decade by fully data driven automatically constructed maps that associate to a set of new factor values a return prediction that is the average of historically observed returns for an area in...
Persistent link: https://www.econbiz.de/10013118137
This paper examines the efficiency of decision trees on US economic crisis periods. Many other studies examined various approaches, like noise-to-ratio models, discrete choice models, neural networks, fuzzy logic and neuro-fuzzy systems among others. Two approaches are applied. The first is a...
Persistent link: https://www.econbiz.de/10013096874
In recent years, support vector regressions (SVRs), a novel artificial neural network (ANN) technique, has been successfully used as a nonparametric tool for regression estimation and forecasting time series data. In this thesis, we deal with the application of SVRs in financial markets...
Persistent link: https://www.econbiz.de/10013100878
This paper presents a computational approach for predicting the S&P CNX Nifty 50 Index. A neural network based model has been used in predicting the direction of the movement of the closing value for the next day of trading. The model presented in the paper also confirms that it can be used to...
Persistent link: https://www.econbiz.de/10013087069
The primary objective of this paper is to propose two nonlinear extensions for macroeconomic forecasting using large datasets. First, we propose an alternative technique for factor estimation, i.e., kernel principal component analysis, which allows the factors to have a nonlinear relationship to...
Persistent link: https://www.econbiz.de/10013065110