Showing 1 - 10 of 516
Ordinary least squares (OLS) is well-known to produce an inconsistent estimator of the spatial parameter in pure spatial autoregression (SAR). This paper explores the potential of indirect inference to correct the inconsistency of OLS. Under broad conditions, it is shown that indirect inference...
Persistent link: https://www.econbiz.de/10011164462
This paper is concerned with the application of jackknife methods as a means of bias reduction in the estimation of autoregressive models with a unit root. It is shown that the usual jackknife estimator based on non-overlapping sub-samples does not remove fully the first-order bias as intended,...
Persistent link: https://www.econbiz.de/10015231703
This paper analyses the properties of jackknife estimators of the first-order autoregressive coefficient when the time series of interest contains a unit root. It is shown that, when the sub-samples do not overlap, the sub-sample estimators have different limiting distributions from the...
Persistent link: https://www.econbiz.de/10009458141
This paper considers the specification and performance of jackknife estimators of the autoregressive coefficient in a model with a near-unit root. The limit distributions of sub-sample estimators that are used in the construction of the jackknife estimator are derived, and the joint moment...
Persistent link: https://www.econbiz.de/10011995212
Persistent link: https://www.econbiz.de/10012406808
This paper is concerned with the application of jackknife methods as a means of bias reduction in the estimation of autoregressive models with a unit root. It is shown that the usual jackknife estimator based on non-overlapping sub-samples does not remove fully the first-order bias as intended,...
Persistent link: https://www.econbiz.de/10011260303
This paper analyses the properties of jackknife estimators of the first-order autoregressive coefficient when the time series of interest contains a unit root. It is shown that, when the sub-samples do not overlap, the sub-sample estimators have different limiting distributions from the...
Persistent link: https://www.econbiz.de/10008615480
We study jackknife estimators in a first-order autoregression with a unit root. Non-overlapping sub-sample estimators have different limit distributions, so the jackknife does not fully eliminate first-order bias. We therefore derive explicit limit distributions of the numerator and denominator...
Persistent link: https://www.econbiz.de/10010665594
Spatial units typically vary over many of their characteristics, introducing potential unobserved heterogeneity which invalidates commonly used homoskedasticity conditions. In the presence of unobserved heteroskedasticity, standard methods based on the (quasi-)likelihood function generally...
Persistent link: https://www.econbiz.de/10014032510
This paper analyses the properties of jackknife estimators of the first-order autoregressive coefficient when the time series of interest contains a unit root. It is shown that, when the sub-samples do not overlap, the sub-sample estimators have different limiting distributions from the...
Persistent link: https://www.econbiz.de/10003927895