Showing 21 - 30 of 106
This paper employs ANN (Artificial Neural Network) models to estimate GHI (global horizontal irradiance) for three major cities in the UAE (United Arab Emirates), namely Abu Dhabi, Dubai and Al-Ain. City data are then used to develop a comprehensive global GHI model for other nearby locations in...
Persistent link: https://www.econbiz.de/10011077707
This study analyses the situation of a bank that wants to create an Internal Rating System (IRB). A credit institute can decide to simulate rating judgements from an external rating agency, like Standard and Poor's or Moody's or Fitch Rating. This research compares different frameworks of neural...
Persistent link: https://www.econbiz.de/10010669374
A method for the selection of centers for radial basis function (RBF) approximation is introduced, which reduces the computational cost of the evaluation of the approximating function. The method takes into consideration:1.the geometric information (arc length and curvature) of the approximating...
Persistent link: https://www.econbiz.de/10010748442
Greenhouse operation and inside climate strongly depend on the outside weather. This implies that at least a year of data collection is required to cover the whole operational domain. Greenhouse-climate models calibrated with data limited to only a small region of the operating domain (weather...
Persistent link: https://www.econbiz.de/10010748955
The design process of photovoltaic (PV) modules can be greatly enhanced by using advanced and accurate models in order to predict accurately their electrical output behavior. The main aim of this paper is to investigate the application of an advanced neural network based model of a module to...
Persistent link: https://www.econbiz.de/10010702509
This paper aims to compare the performance of different Artificial Neural Networks techniques for tourist demand forecasting. We test the forecasting accuracy of three different types of architectures: a multi-layer perceptron, a radial basis function and an Elman network. We also evaluate the...
Persistent link: https://www.econbiz.de/10010710595
This paper aims to compare the performance of different Artificial Neural Networks techniques for tourist demand forecasting. We test the forecasting accuracy of three different types of architectures: a multi-layer perceptron, a radial basis function and an Elman network. We also evaluate the...
Persistent link: https://www.econbiz.de/10010710606
Short-term wind speed forecasting is of great importance for wind farm operations and the integration of wind energy into the power grid system. Adaptive and reliable methods and techniques of wind speed forecasts are urgently needed in view of the stochastic nature of wind resource varying from...
Persistent link: https://www.econbiz.de/10010804408
In this paper we investigate, the possibility of using an adaptive Artificial Neural Network (ANN), in order to find a suitable model for sizing Stand-Alone Photovoltaic (SAPV) systems, based on a minimum of input data. The model combines Radial Basis Function (RBF) network and Infinite Impulse...
Persistent link: https://www.econbiz.de/10010806568
This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH)....
Persistent link: https://www.econbiz.de/10010808209