Showing 1 - 10 of 16,862
This article uses a sequentialized experimental design to select simulation input combinations for global optimization, based on Kriging (also called Gaussian process or spatial correlation modeling); this Kriging is used to analyze the input/output data of the simulation model (computer code)....
Persistent link: https://www.econbiz.de/10014185812
This paper studies simulation-based optimization with multiple outputs. It assumes that the simulation model has one random objective function and must satisfy given constraints on the other random outputs. It presents a statistical procedure for testing whether a specific input combination...
Persistent link: https://www.econbiz.de/10014049484
This paper derives a novel procedure for testing the Karush-Kuhn-Tucker (KKT) first-order optimality conditions in models with multiple random responses.Such models arise in simulation-based optimization with multivariate outputs. This paper focuses on expensive simulations, which have small...
Persistent link: https://www.econbiz.de/10014062609
This article uses a sequentialized experimental design to select simulation input com- binations for global optimization, based on Kriging (also called Gaussian process or spatial correlation modeling); this Kriging is used to analyze the input/output data of the simulation model (computer...
Persistent link: https://www.econbiz.de/10011092889
This paper derives a novel procedure for testing the Karush-Kuhn-Tucker (KKT) first-order optimality conditions in models with multiple random responses.Such models arise in simulation-based optimization with multivariate outputs.This paper focuses on expensive simulations, which have small...
Persistent link: https://www.econbiz.de/10011090910
This paper studies simulation-based optimization with multiple outputs. It assumes that the simulation model has one random objective function and must satisfy given constraints on the other random outputs. It presents a statistical procedure for test- ing whether a specific input combination...
Persistent link: https://www.econbiz.de/10011091786
This tutorial explains the basics of linear regression models. especially low-order polynomials. and the corresponding statistical designs. namely, designs of resolution III, IV, V, and Central Composite Designs (CCDs).This tutorial assumes 'white noise', which means that the residuals of the...
Persistent link: https://www.econbiz.de/10012734170
This chapter surveys two methods for the optimization of real-world systems that are modelled through simulation. These methods use either linear regression metamodels, or Kriging (Gaussian processes). The metamodel type guides the design of the experiment; this design fixes the input...
Persistent link: https://www.econbiz.de/10012956205
This tutorial reviews the design and analysis of simulation experiments. These experiments may have various goals: validation, prediction, sensitivity analysis, optimization (possibly robust), and risk or uncertainty analysis. These goals may be realized through metamodels. Two types of...
Persistent link: https://www.econbiz.de/10012960084
In this chapter we present Kriging also known as a Gaussian process (GP) model which is a mathematical interpolation method. To select the input combinations to be simulated, we use Latin hypercube sampling (LHS); we allow uniform and non-uniform distributions of the simulation inputs. Besides...
Persistent link: https://www.econbiz.de/10012943062