Showing 1 - 10 of 4,070
The transient response of a proton exchange membrane fuel cell (PEMFC) is an important issue for transportation applications. The objective of this study is to investigate the effects of operating and controlling parameters on the transient response of a PEMFC for achieving more stable cell...
Persistent link: https://www.econbiz.de/10011116030
This study investigates the effects of the flooding of the gas diffusion layer (GDL), as a result of liquid water accumulation, on the performance of a proton exchange membrane fuel cell (PEMFC). The transient profiles of the current generated by the cell are obtained using the numerical...
Persistent link: https://www.econbiz.de/10010806221
The optimal design of the gas diffusion layer (GDL) of proton exchange membrane fuel cells is crucial because it directly determines the mass transport mechanism of the reactants and products. In this study, the micro-porous layer (MPL) penetration thickness, which affects the pore size profile...
Persistent link: https://www.econbiz.de/10010702529
A three-dimensional, two-phase, non-isothermal model has been developed to explore the interaction between heat and water transport in proton exchange membrane fuel cells (PEMFCs). Water condensate produced from the electrochemical reaction may accumulate in the open pores of the gas diffusion...
Persistent link: https://www.econbiz.de/10011052963
Effective removal and transport of water in the flow channel of a proton exchange membrane (PEM) fuel cell (PEMFC) is significantly important to the critical water management in PEMFCs. In this study, the process of water removal and transport is investigated numerically by using the...
Persistent link: https://www.econbiz.de/10010718900
This paper examines the dynamic cell performance of a kW-grade proton exchange membrane fuel cell stack with anode dead-ended mode fuel supply. A self-made kW-grade 40 cells stack with reaction area of 112.85cm2 has been used in the experiment. A single-chip (DSPIC30F4011) is utilized for...
Persistent link: https://www.econbiz.de/10011208373
A two-phase polymer electrolyte membrane fuel cell model has been developed to investigate transport of species in a gas diffusion layer taking into account effects of liquid water saturation. A set of governing equations for mass, momentum, species concentration involving oxygen, hydrogen,...
Persistent link: https://www.econbiz.de/10010805645
Gas diffusion layer (GDL) is an important component of a proton exchange membrane fuel cell (PEMFC) to take part in the interplay of the transport of different species. It has been found that the performance of a PEMFC depends upon the morphology of the GDL. The performance of PEM fuel cell...
Persistent link: https://www.econbiz.de/10010806233
The contact resistance between the gas diffusion layer (GDL) and the bipolar plate has been experimentally estimated as they are assembled in proton exchange membrane (PEM) fuel cells. A number of coated and non-coated GDLs, graphite bipolar plates and a sealing gasket were employed to perform...
Persistent link: https://www.econbiz.de/10010804187
The transport of electrons through the gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells has a significant impact on the optimal design and operation of PEM fuel cells and is directly affected by the anisotropic nature of the carbon paper material. In this study, a...
Persistent link: https://www.econbiz.de/10010572003