Showing 41 - 50 of 1,007
This paper proposes a multivariate stochastic volatility-in-vector autoregression model called the conditional autoregressive inverse Wishart-in-VAR (CAIW-in-VAR) model as a framework for studying the real effects of uncertainty shocks. We make three contributions to the literature. First, the...
Persistent link: https://www.econbiz.de/10011500382
This paper examines the importance of realized volatility in bond yield density prediction. We incorporate realized volatility into a Dynamic Nelson-Siegel (DNS) model with stochastic volatility and evaluate its predictive performance on US bond yield data. When compared to popular...
Persistent link: https://www.econbiz.de/10012938238
Presently there is growing interest in dynamic stochastic general equilibrium (DSGE) models that have more parameters, endogenous variables, exogenous shocks, and observables than the Smets and Wouters (2007) model, and substantial additional complexities from non-Gaussian distributions and the...
Persistent link: https://www.econbiz.de/10012822510
Persistent link: https://www.econbiz.de/10012651309
Persistent link: https://www.econbiz.de/10012651332
We present a general framework for Bayesian estimation and causality assessment in epidemiological models. The key to our approach is the use of sequential Monte Carlo methods to evaluate the likelihood of a generic epidemiological model. Once we have the likelihood, we specify priors and rely...
Persistent link: https://www.econbiz.de/10013235115
We suggest using "realized volatility" as a volatility proxy to aid in model-based multivariate bond yield density forecasting. To do so, we develop a general estimation approach to incorporate volatility proxy information into dynamic factor models with stochastic volatility. The resulting...
Persistent link: https://www.econbiz.de/10013210358
This paper proposes a multivariate stochastic volatility-in-vector autoregression model called the conditional autoregressive inverse Wishart-in-VAR (CAIW-in-VAR) model as a framework for studying the real effects of uncertainty shocks. We make three contributions to the literature. First, the...
Persistent link: https://www.econbiz.de/10013210396
Persistent link: https://www.econbiz.de/10012792594
We present a general framework for Bayesian estimation and causality assessment in epidemiological models. The key to our approach is the use of sequential Monte Carlo methods to evaluate the likelihood of a generic epidemiological model. Once we have the likelihood, we specify priors and rely...
Persistent link: https://www.econbiz.de/10012494833