Showing 1 - 10 of 37,176
We propose a generic Markov Chain Monte Carlo (MCMC) algorithm to speed up computations for datasets with many observations. A key feature of our approach is the use of the highly efficient difference estimator from the survey sampling literature to estimate the log-likelihood accurately using...
Persistent link: https://www.econbiz.de/10011442891
We propose a generic Markov Chain Monte Carlo (MCMC) algorithm to speed up computations for datasets with many observations. A key feature of our approach is the use of the highly efficient difference estimator from the survey sampling literature to estimate the log-likelihood accurately using...
Persistent link: https://www.econbiz.de/10011300362
We propose a generic Markov Chain Monte Carlo (MCMC) algorithm to speed up computations for datasets with many observations. A key feature of our approach is the use of the highly efficient difference estimator from the survey sampling literature to estimate the log-likelihood accurately using...
Persistent link: https://www.econbiz.de/10011300365
The computing time for Markov Chain Monte Carlo (MCMC) algorithms can be prohibitively large for datasets with many observations, especially when the data density for each observation is costly to evaluate. We propose a framework where the likelihood function is estimated from a random subset of...
Persistent link: https://www.econbiz.de/10011442889
The computing time for Markov Chain Monte Carlo (MCMC) algorithms can be prohibitively large for datasets with many observations, especially when the data density for each observation is costly to evaluate. We propose a framework where the likelihood function is estimated from a random subset of...
Persistent link: https://www.econbiz.de/10010500806
We propose a generic Markov Chain Monte Carlo (MCMC) algorithm to speed up computations for datasets with many observations. A key feature of our approach is the use of the highly effcient difference estimator from the survey sampling literature to estimate the log-likelihood accurately using...
Persistent link: https://www.econbiz.de/10013002559
The complexity of Markov Chain Monte Carlo (MCMC) algorithms arises from the requirement of a likelihood evaluation for the full data set in each iteration. Payne and Mallick (2014) propose to speed up the Metropolis-Hastings algorithm by a delayed acceptance approach where the acceptance...
Persistent link: https://www.econbiz.de/10013009854
The computing time for Markov Chain Monte Carlo (MCMC) algorithms can be prohibitively large for datasets with many observations, especially when the data density for each observation is costly to evaluate. We propose a framework where the likelihood function is estimated from a random subset of...
Persistent link: https://www.econbiz.de/10013024606
We propose a fast approximate Metropolis-Hastings algorithm for large data sets embedded in a design based approach. Here, the loglikelihood ratios involved in the Metropolis-Hastings acceptance step are considered as data. The building block is one single subsample from the complete data set,...
Persistent link: https://www.econbiz.de/10011567127
We propose a fast approximate Metropolis-Hastings algorithm for large data sets embedded in a design based approach. Here, the loglikelihood ratios involved in the Metropolis-Hastings acceptance step are considered as data. The building block is one single subsample from the complete data set,...
Persistent link: https://www.econbiz.de/10011566817