Showing 71 - 80 of 9,150
This paper proposes a rating methodology that is based on a non-linear classification method, the support vector machine, and a non-parametric technique for mapping rating scores into probabilities of default. We give an introduction to underlying statistical models and represent the results of...
Persistent link: https://www.econbiz.de/10005207929
In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. The tool must be precise but also easily adaptable to the bank's objections regarding the relation of false acceptances (Type I error) and false rejections (Type II error). We explore the suitabil- ity of Smooth...
Persistent link: https://www.econbiz.de/10005207945
Predicting default probabilities is at the core of credit risk management and is becoming more and more important for banks in order to measure their client's degree of risk, and for rms to operate successfully. The SVM with evolutionary feature selection is applied to the CreditReform database....
Persistent link: https://www.econbiz.de/10010543377
During the last three decades various models have been proposed by the literature to predict the risk of bankruptcy and of firm insolvency, which make use of structural and empirical tools, namely rating system, credit scoring, option pricing and three alternative methods (fuzzy logic, efficient...
Persistent link: https://www.econbiz.de/10009386304
In many economic applications it is desirable to make future predictions about the financial status of a company. The focus of predictions is mainly if a company will default or not. A support vector machine (SVM) is one learning method which uses historical data to establish a classification...
Persistent link: https://www.econbiz.de/10008568137
This study analyses credit default risk for firms in the Asian and Pacific region by applying two methodologies: a Support Vector Machine (SVM) and a logistic regression (Logit). Among different financial ratios suggested as predictors of default, leverage ratios and the company size display a...
Persistent link: https://www.econbiz.de/10009021755
The purpose of this paper is to propose a hybrid model which combines locally linear embedding (LLE) algorithm and support vector machines (SVM) to predict the failure of firms based on past financial performance data. By making use of the LLE algorithm to perform dimension reduction for feature...
Persistent link: https://www.econbiz.de/10010643292
This study evaluates the performance of feed-forward neural networks to model and forecast recovery rates of defaulted bank loans. In order to guarantee that the predictions are mapped into the unit interval, the neural networks are implemented with a logistic activation function in the output...
Persistent link: https://www.econbiz.de/10008460817
Bankruptcy filings are as high today as ever, calling into question the efficacy of existing bankruptcy prediction models. This paper tries to provide an alternative for bankruptcy prediction by integrated Multi Layered Perceptron with Imperialist Competitive Algorithm (MLP-ICA) and Kohonen self...
Persistent link: https://www.econbiz.de/10013006207
Graphical data representation is an important tool for model selection in bankruptcy analysis since the problem is highly non-linear and its numerical representation is much less transparent. In classical rating models a convenient representation of ratings in a closed form is possible reducing...
Persistent link: https://www.econbiz.de/10012966231