Showing 1 - 10 of 674,981
Sequential Monte Carlo (SMC) methods are widely used for filtering purposes of non-linear economic or financial models. Nevertheless the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov- Chain...
Persistent link: https://www.econbiz.de/10011506783
Sequential Monte Carlo (SMC) methods are widely used for non-linear filtering purposes. However, the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov-Chain Monte-Carlo (MCMC) methods. Not only do SMC...
Persistent link: https://www.econbiz.de/10011504888
Sequential Monte Carlo (SMC) methods are widely used for filtering purposes of non-linear economic or financial models. Nevertheless the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov- Chain...
Persistent link: https://www.econbiz.de/10011272750
Persistent link: https://www.econbiz.de/10010416851
Sequential Monte Carlo (SMC) methods are widely used for non-linear filtering purposes. Nevertheless the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov-Chain Monte-Carlo (MCMC) methods. Not only SMC...
Persistent link: https://www.econbiz.de/10012936969
Sequential Monte Carlo (SMC) methods are widely used for filtering purposes of non-linear economic or financial models. Nevertheless the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov- Chain...
Persistent link: https://www.econbiz.de/10013047483
Sequential Monte Carlo (SMC) methods are widely used for non-linear filtering purposes. However, the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov-Chain Monte-Carlo (MCMC) methods. Not only do SMC...
Persistent link: https://www.econbiz.de/10011755319
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10010399681
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear, non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10013005987
Persistent link: https://www.econbiz.de/10010191411