Showing 1 - 10 of 620
We develop a vector autoregressive model with time variation in the mean and the variance. The unobserved time-varying mean is assumed to follow a random walk and we also link it to long-term Consensus forecasts, similar in spirit to so called democratic priors. The changes in variance are...
Persistent link: https://www.econbiz.de/10011809970
Persistent link: https://www.econbiz.de/10012120973
We study optimality properties in finite samples for time-varying volatility models driven by the score of the predictive likelihood function. Available optimality results for this class of models suffer from two drawbacks. First, they are only asymptotically valid when evaluated at the...
Persistent link: https://www.econbiz.de/10011819504
Persistent link: https://www.econbiz.de/10009722625
We propose a new Markov switching model with time varying probabilities for the transitions. The novelty of our model is that the transition probabilities evolve over time by means of an observation driven model. The innovation of the time varying probability is generated by the score of the...
Persistent link: https://www.econbiz.de/10010362974
We study the strong consistency and asymptotic normality of the maximum likelihood estimator for a class of time series models driven by the score function of the predictive likelihood. This class of nonlinear dynamic models includes both new and existing observation driven time series models....
Persistent link: https://www.econbiz.de/10010250505
We study the performance of alternative methods for calculating in-sample confidence and out of-sample forecast bands for time-varying parameters. The in-sample bands reflect parameter uncertainty only. The out-of-sample bands reflect both parameter uncertainty and innovation uncertainty. The...
Persistent link: https://www.econbiz.de/10011295703
We develop optimal formulations for nonlinear autoregressive models by representing them as linear autoregressive models with time-varying temporal dependence coefficients. We propose a parameter updating scheme based on the score of the predictive likelihood function at each time point. The...
Persistent link: https://www.econbiz.de/10010390075
We introduce a new model for time-varying spatial dependence. The model extends the well-known static spatial lag model. All parameters can be estimated conveniently by maximum likelihood. We establish the theoretical properties of the model and show that the maximum likelihood estimator for the...
Persistent link: https://www.econbiz.de/10010391531
Persistent link: https://www.econbiz.de/10010191374