Showing 131 - 140 of 192
We show how cubic smoothing splines fitted to univariate time series data can be used to obtain local linear forecasts. Our approach is based on a stochastic state space model which allows the use of a likelihood approach for estimating the smoothing parameter, and which enables easy...
Persistent link: https://www.econbiz.de/10005087585
In this paper, we consider the problem of estimation of semi-linear regression models. Using invariance arguments, Bhowmik and King (2001) have derived the probability density functions of the maximal invariant statistic for the nonlinear component of these models. Using these density functions...
Persistent link: https://www.econbiz.de/10005087596
This paper presents a Markov chain Monte Carlo (MCMC) algorithm to estimate parameters and latent stochastic processes in the asymmetric stochastic volatility (SV) model, in which the Box-Cox transformation of the squared volatility follows an autoregressive Gaussian distribution and the...
Persistent link: https://www.econbiz.de/10005149031
In the context of a general regression model in which some regression coefficients are of interest and others are purely nuisance parameters, we derive the density function of a maximal invariant statistic with the aim of testing for the inclusion of regressors (either linear or non-linear) in...
Persistent link: https://www.econbiz.de/10005149046
We provide Markov chain Monte Carlo (MCMC) algorithms for computing the bandwidth matrix for multivariate kernel density estimation. Our approach is based on treating the elements of the bandwidth matrix as parameters to be estimated, which we do by optimizing the likelihood cross-validation...
Persistent link: https://www.econbiz.de/10005149069
The stochastic volatility model enjoys great success in modeling the time-varying volatility of asset returns. There are several specifications for volatility including the most popular one which allows logarithmic volatility to follow an autoregressive Gaussian process, known as log-normal...
Persistent link: https://www.econbiz.de/10005149092
Multivariate kernel regression is an important tool for investigating the relationship between a response and a set of explanatory variables. It is generally accepted that the performance of a kernel regression estimator largely depends on the choice of bandwidth rather than the kernel function....
Persistent link: https://www.econbiz.de/10005149112
Persistent link: https://www.econbiz.de/10006414103
This paper aims to investigate a Bayesian sampling approach to parameter estimation in the semiparametric GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This...
Persistent link: https://www.econbiz.de/10009366291
We approximate the error density of a nonparametric regression model by a mixture of Gaussian densities with means being the individual error realizations and variance a constant parameter. We investigate the construction of a likelihood and posterior for bandwidth parameters under this...
Persistent link: https://www.econbiz.de/10009275517