Absil, P.-A.; Amodei, Luca; Meyer, Gilles - In: Computational Statistics 29 (2014) 3, pp. 569-590
We consider two Riemannian geometries for the manifold <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$${\mathcal{M }(p,m\times n)}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi mathvariant="script">M</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>m</mi> <mo>×</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </math> </EquationSource> </InlineEquation> of all <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$m\times n$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>m</mi> <mo>×</mo> <mi>n</mi> </mrow> </math> </EquationSource> </InlineEquation> matrices of rank <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$p$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>p</mi> </math> </EquationSource> </InlineEquation>. The geometries are induced on <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$${\mathcal{M }(p,m\times n)}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi mathvariant="script">M</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>m</mi> <mo>×</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </math> </EquationSource> </InlineEquation> by viewing it as the base...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>