Showing 1 - 10 of 728
We study a panel data model with general heterogeneous effects, where slopes are allowed to be varying across both individuals and times. The key assumption for dimension reduction is that the heterogeneous slopes can be expressed as a factor structure so that the high-dimensional slope matrix...
Persistent link: https://www.econbiz.de/10012014117
Common high-dimensional methods for prediction rely on having either a sparse signal model, a model in which most parameters are zero and there are a small number of non-zero parameters that are large in magnitude, or a dense signal model, a model with no large parameters and very many small...
Persistent link: https://www.econbiz.de/10011337679
Common high-dimensional methods for prediction rely on having either a sparse signal model, a model in which most parameters are zero and there are a small number of non-zero parameters that are large in magnitude, or a dense signal model, a model with no large parameters and very many small...
Persistent link: https://www.econbiz.de/10010477564
We consider inference about coefficients on a small number of variables of interest in a linear panel data model with additive unobserved individual and time specific effects and a large number of additional time-varying confounding variables. We allow the number of these additional confounding...
Persistent link: https://www.econbiz.de/10011582013
Persistent link: https://www.econbiz.de/10012146146
Persistent link: https://www.econbiz.de/10011941448
This paper is about the ability and means to root-n consistently and efficiently estimate linear, mean-square continuous functionals of a high dimensional, approximately sparse regression. Such objects include a wide variety of interesting parameters such as the covariance between two regression...
Persistent link: https://www.econbiz.de/10012667932
This paper studies inference on treatment effects in aggregate panel data settings with a single treated unit and many control units. We propose new methods for making inference on average treatment effects in settings where both the number of pre-treatment and the number of post-treatment...
Persistent link: https://www.econbiz.de/10012146384
This paper studies inference on treatment effects in aggregate panel data settings with a single treated unit and many control units. We propose new methods for making inference on average treatment effects in settings where both the number of pre-treatment and the number of post-treatment...
Persistent link: https://www.econbiz.de/10012014137
This paper is about the ability and means to root-n consistently and efficiently estimate linear, mean-square continuous functionals of a high dimensional, approximately sparse regression. Such objects include a wide variety of interesting parameters such as the covariance between two regression...
Persistent link: https://www.econbiz.de/10012595665