Showing 1 - 10 of 405,163
We develop a new targeted maximum likelihood estimation method that provides improved forecasting for misspecified linear autoregressive models. The method weighs data points in the observed sample and is useful in the presence of data generating processes featuring structural breaks, complex...
Persistent link: https://www.econbiz.de/10012427192
We develop a new targeted maximum likelihood estimation method that provides improved forecasting for misspecified linear autoregressive models. The method weighs data points in the observed sample and is useful in the presence of data generating processes featuring structural breaks, complex...
Persistent link: https://www.econbiz.de/10013250990
We introduce a new estimation framework which extends the Generalized Method of Moments (GMM) to settings where a subset of the parameters vary over time with unknown dynamics. To filter out the dynamic path of the time-varying parameter, we approximate the dynamics by an autoregressive process...
Persistent link: https://www.econbiz.de/10011431471
We extend the generalized method of moments to a setting where a subset of the parameters may vary over time with unknown dynamics. We approximate the true unknown dynamics by an updating scheme that is driven by the influence function of the conditional criterion function at time t. The updates...
Persistent link: https://www.econbiz.de/10012936574
We extend the generalized method of moments to a setting where a subset of the parameters may vary over time with unknown dynamics. We approximate the true unknown dynamics by an updating scheme that is driven by the influence function of the conditional criterion function at time t. The updates...
Persistent link: https://www.econbiz.de/10012936641
We propose a new class of observation driven time series models referred to as Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS model is the scaled score of the likelihood function. This approach provides a unified and consistent framework for introducing...
Persistent link: https://www.econbiz.de/10011377309
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10011380135
Persistent link: https://www.econbiz.de/10009720703
We develop a new simultaneous time series model for volatility and dependence with long memory (fractionally integrated) dynamics and heavy-tailed densities. Our new multivariate model accounts for typical empirical features in financial time series while being robust to outliers or jumps in the...
Persistent link: https://www.econbiz.de/10013117591
We propose a new class of observation driven time series models referred to as Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS model is the scaled score of the likelihood function. This approach provides a unified and consistent framework for introducing...
Persistent link: https://www.econbiz.de/10012722680