Showing 1 - 10 of 888
In the present paper we propose a new method, the Penalized Adaptive Method (PAM), for a data driven detection of structure changes in sparse linear models. The method is able to allocate the longest homogeneous intervals over the data sample and simultaneously choose the most proper variables...
Persistent link: https://www.econbiz.de/10011714497
In the present paper we propose a new method, the Penalized Adaptive Method (PAM), for a data driven detection of structure changes in sparse linear models. The method is able to allocate the longest homogeneous intervals over the data sample and simultaneously choose the most proper variables...
Persistent link: https://www.econbiz.de/10011725390
The predictability of a high-dimensional time series model in forecasting with large information sets depends not only on the stability of parameters but also depends heavily on the active covariates in the model. Since the true empirical environment can change as time goes by, the variables...
Persistent link: https://www.econbiz.de/10012433244
High-dimensional, streaming datasets are ubiquitous in modern applications. Examples range from nance and e-commerce to the study of biomedical and neuroimaging data. As a result, many novel algorithms have been proposed to address challenges posed by such datasets. In this work, we focus on the...
Persistent link: https://www.econbiz.de/10012433208
In the present paper we study the dynamics of penalization parameter ? of the least absolute shrinkage and selection operator (Lasso) method proposed by Tibshirani (1996) and extended into quantile regression context by Li and Zhu (2008). The dynamic behaviour of the parameter ? can be observed...
Persistent link: https://www.econbiz.de/10011557306
In the present paper we study the dynamics of penalization parameter ? of the least absolute shrinkage and selection operator (Lasso) method proposed by Tibshirani (1996) and extended into quantile regression context by Li and Zhu (2008). The dynamic behaviour of the parameter ? can be observed...
Persistent link: https://www.econbiz.de/10011580445
Persistent link: https://www.econbiz.de/10012912064
The predictability of a high-dimensional time series model in forecasting with large information sets depends not only on the stability of parameters but also depends heavily on the active covariates in the model. Since the true empirical environment can change as time goes by, the variables...
Persistent link: https://www.econbiz.de/10012827733
In the present paper we propose a new method, the Penalized Adaptive Method (PAM), for a data driven detection of structural changes in sparse linear models. The method is able to allocate the longest homogeneous intervals over the data sample and simultaneously choose the most proper variables...
Persistent link: https://www.econbiz.de/10012912415