Showing 64,481 - 64,490 of 64,984
The Box-Cox quantile regression model using the two stage method suggested by Chamberlain (1994) and Buchinsky (1995) provides a flexible and numerically attractive extension of linear quantile regression techniques. However, the objective function in stage two of the method may not exists. We...
Persistent link: https://www.econbiz.de/10010298010
Sliced inverse regression (SIR) is a clever technique for reducing the dimension of the predictor in regression problems, thus avoiding the curse of dimensionality. There exist many contributions on various aspects of the performance of SIR. Up to now, few attention has been paid to the problem...
Persistent link: https://www.econbiz.de/10010298194
Persistent link: https://www.econbiz.de/10010298196
This paper presents variance extraction procedures for univariate time series. The volatility of a times series is monitored allowing for non-linearities, jumps and outliers in the level. The volatility is measured using the height of triangles formed by consecutive observations of the time...
Persistent link: https://www.econbiz.de/10010298200
This paper suggests an improved GMM estimator for the autoregressive parameter of a spatial autoregressive error model by taking into account that unobservable regression disturbances are di.erent from observable regression residuals. Although this di.erence decreases in large samples, it is...
Persistent link: https://www.econbiz.de/10010298206
We propose a completely kernel based method of estimating the call price function or the state price density of options. The new estimator of the call price function fulfills the constraints like monotonicity and convexity given in Breeden and Litzenberger (1978) without necessarily estimating...
Persistent link: https://www.econbiz.de/10010298211
We discuss optimal design problems for a popular method of series estimation in regression problems. Commonly used design criteria are based on the generalized variance of the estimates of the coefficients in a truncated series expansion and do not take possible bias into account. We present a...
Persistent link: https://www.econbiz.de/10010298214
In this paper we are concerned with shape restricted estimation in inverse regression problems with convolution-type operator. We use increasing rearrangements to compute increasingand convex estimates from an (in principle arbitrary) unconstrained estimate of the unknown regression function. An...
Persistent link: https://www.econbiz.de/10010298216
We extend the important idea of range-based volatility estimation to the multivariate case. In particular, we propose a range-based covariance estimator that is motivated by financial economic considerations (the absence of arbitrage), in addition to statistical considerations. We show that,...
Persistent link: https://www.econbiz.de/10010298281
Traditional portfolio optimization has been often criticized since it does not account for estimation risk. Theoretical considerations indicate that estimation risk is mainly driven by the parameter uncertainty regarding the expected asset returns rather than their variances and covariances....
Persistent link: https://www.econbiz.de/10010298430