Showing 341 - 350 of 351
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be...
Persistent link: https://www.econbiz.de/10011804820
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be...
Persistent link: https://www.econbiz.de/10011657377
Persistent link: https://www.econbiz.de/10006773951
Persistent link: https://www.econbiz.de/10013534577
Persistent link: https://www.econbiz.de/10014338128
Persistent link: https://www.econbiz.de/10014339912
Persistent link: https://www.econbiz.de/10014471443
Persistent link: https://www.econbiz.de/10014306644
We study cluster-robust inference for binary response models. Inference based on the most commonly-used cluster-robust variance matrix estimator (CRVE) can be very unreliable. We study several alternatives. Conceptually the simplest of these, but also the most computationally demanding, involves...
Persistent link: https://www.econbiz.de/10015048740
For linear regression models with cross-section or panel data, it is natural to assume that the disturbances are clustered in two dimensions. However, the finite-sample properties of two-way cluster-robust tests and confidence intervals are often poor. We discuss several ways to improve...
Persistent link: https://www.econbiz.de/10015048741