Showing 51 - 60 of 79
We introduce the idea of Characteristic Regions to solve a classification problem. By identifying regions in which classes are dense (i.e. many observations) and also relevant (for discrimination) we can characterize the different classes. These Characteristic Regions are used to generate a...
Persistent link: https://www.econbiz.de/10010296653
In simulation studies Latent Factor Prediction Pursuit outperformed classical reduced rank regression methods. The algorithm described so far for Latent Factor Prediction Pursuit had two shortcomings: It was only implemented for situations where the explanatory variables were of full colum rank....
Persistent link: https://www.econbiz.de/10010296659
A lot of alternatives and constraints have been proposed in order to improve the Fisher criterion. But most of them are not linked to the error rate, the primary interest in many applications of classification. By introducing an upper bound for the error rate a criterion is developed which can...
Persistent link: https://www.econbiz.de/10010296681
The optimization of the hyper-parameters of a statistical procedure or machine learning task is a crucial step for obtaining a minimal error. Unfortunately, the optimization of hyper-parameters usually requires many runs of the procedure and hence is very costly. A more detailed knowledge of the...
Persistent link: https://www.econbiz.de/10010296699
Linear Discriminant Analysis (LDA) performs well for classifica- tion of business phases – even though the premises of an LDA are not met. As the variables are highly correlated there are numerical as well as interpretational shortcomings. By transforming the classification problem to a...
Persistent link: https://www.econbiz.de/10010296702
Investigating a data set containing different sounds of several instruments suggests that local modelling may be a promising approach to take into account different timbre characteristics of different instruments. For this reason, some basic ideas towards a local modelling are realized in this...
Persistent link: https://www.econbiz.de/10010296711
Despite its age, the Linear Discriminant Analysis performs well even in situations where the underlying premises like normally distributed data with constant covariance matrices over all classes are not met. It is, however, a global technique that does not regard the nature of an individual...
Persistent link: https://www.econbiz.de/10010296724
The performance of an algorithm often largely depends on some hyper parameter which should be optimized before its usage. Since most conventional optimization methods suffer from some drawbacks, we developed an alternative way to find the best hyper parameter values. Contrary to the well known...
Persistent link: https://www.econbiz.de/10010296744
Despite its age, the Linear Discriminant Analysis performs well even in situations where the underlying premises like normally distributed data with constant covariance matrices over all classes are not met. It is, however, a global technique that does not regard the nature of an individual...
Persistent link: https://www.econbiz.de/10003354382
The performance of an algorithm often largely depends on some hyper parameter which should be optimized before its usage. Since most conventional optimization methods suffer from some drawbacks, we developed an alternative way to find the best hyper parameter values. Contrary to the well known...
Persistent link: https://www.econbiz.de/10003309916