Showing 81 - 90 of 51,030
Persistent link: https://www.econbiz.de/10003556381
This study presents an extension of the Gaussian process regression model for multiple-input multiple-output forecasting. This approach allows modelling the cross-dependencies between a given set of input variables and generating a vectorial prediction. Making use of the existing correlations in...
Persistent link: https://www.econbiz.de/10011537542
Purpose – We use a large and rich data set consisting of over 123,000 single-family houses sold in Switzerland between 2005 and 2017 to investigate the accuracy and volatility of different methods for estimating and updating hedonic valuation models.Design/methodology/approach – We apply six...
Persistent link: https://www.econbiz.de/10011976945
Artificial neural networks have become increasingly popular for statistical model fitting over the last years, mainly due to increasing computational power. In this paper, an introduction to the use of artificial neural network (ANN) regression models is given. The problem of predicting the GDP...
Persistent link: https://www.econbiz.de/10011897260
Echo State Neural Networks (ESN) were applied to forecast the realized variance time series of 19 major stock market indices. Symmetric ESN and asymmetric AESN models were constructed and compared with the benchmark realized variance models HAR and AHAR that approximate the long memory of the...
Persistent link: https://www.econbiz.de/10011818288
In this paper we examine and present the methodology of feed-forward neural networks with error backpropagation algorithm and non-linear methods. We test some applications of time-series analysis in economics. The first part is consisted by applications following the traditional approach of...
Persistent link: https://www.econbiz.de/10014191880
This study aims to forecast oil prices using evolutionary techniques such as gene expression programming (GEP) and artificial neural network (NN) models to predict oil prices over the period from January 2, 1986 to June 12, 2012. Autoregressive integrated moving average (ARIMA) models are...
Persistent link: https://www.econbiz.de/10012910387
In this paper, a crisis index for the oil price shock is defined and a neural network model is specified for the prediction of the crisis index. This paper contributes to the literature in three ways. First, we build an early warning system for crude oil price. Although the oil price became one...
Persistent link: https://www.econbiz.de/10012942887
Predictions of asset returns and volatilities are heavily discussed and analyzed in the finance research literature. In this paper, we compare linear and nonlinear predictions for stock- and bond index returns and their covariance matrix. We show in-sample and out-of-sample prediction accuracy...
Persistent link: https://www.econbiz.de/10013116144
We present how to enhance classical generalized linear models by neural network features. On the way there, we highlight the traps and pitfalls that need to be avoided to get good statistical models. This includes the non-uniqueness of sufficiently good regression models, the balance property,...
Persistent link: https://www.econbiz.de/10012846635