Showing 81 - 90 of 46,956
It is impossible to analyze an asset taken in isolation, without taking into account the wider picture of the market. This fact is behind the extensive use of copulas or vector autoregressive models in finance, which allow to model dependencies between assets. In this paper, we look at the...
Persistent link: https://www.econbiz.de/10013307006
We present a hierarchical architecture based on recurrent neural networks for predicting disaggregated inflation components of the Consumer Price Index (CPI). While the majority of existing research is focused on predicting headline inflation, many economic and financial institutions are...
Persistent link: https://www.econbiz.de/10014345532
In this paper, we propose a new procedure for unconditional and conditional forecasting in agent-based models. The proposed algorithm is based on the application of amortized neural networks and consists of two steps. The first step simulates artificial datasets from the model. In the second...
Persistent link: https://www.econbiz.de/10014346187
In this study, we analyzed the forecasting and nowcasting performance of a generalized regression neural network (GRNN). We provide evidence from Monte Carlo simulations for the relative forecast performance of GRNN depending on the data-generating process. We show that GRNN outperforms an...
Persistent link: https://www.econbiz.de/10014496850
Purpose - For policymakers and participants of financial markets, predictions of trading volumes of financial indices are important issues. This study aims to address such a prediction problem based on the CSI300 nearby futures by using high-frequency data recorded each minute from the launch...
Persistent link: https://www.econbiz.de/10014497016
Dictionary approaches are at the forefront of current techniques for quantifying central bank communication. This paper proposes embeddings - a language model trained using machine learning techniques - to locate words and documents in a multidimensional vector space. To accomplish this, we...
Persistent link: https://www.econbiz.de/10014443189
The prediction of financial distress has emerged as a significant concern over a prolonged period spanning more than half a century. This subject has garnered considerable attention owing to the precise outcomes derived from its predictive models. The main objective of this study is to predict...
Persistent link: https://www.econbiz.de/10014372938
Using state-of-the-art recurrent neural network architectures, this study attempts to predict credit default swap risk premia for BR[I]CS countries as accurately as possible. In the time series setting, these recurrent neural networks are ELMAN, NARX, GRU, and LSTM RNNs, considering local and...
Persistent link: https://www.econbiz.de/10014447473
I evaluate whether incorporating sub-national trends improves macroeconomic fore-casting accuracy in a deep machine learning framework. Specifically, I adopt a computer vision setting by transforming U.S. economic data into a ‘video’ series of geographic ‘images’ and utilizing a...
Persistent link: https://www.econbiz.de/10014256632
Ever since the existence of financial markets, predicting stocks’ movement has been crucial for investors in order to increase their investment returns. Despite the plethora of research, the outstanding literature provides mixed results concerning the choice of model. Are Artificial...
Persistent link: https://www.econbiz.de/10014244977