Showing 21 - 29 of 29
Persistent link: https://www.econbiz.de/10012486436
Persistent link: https://www.econbiz.de/10013206239
Persistent link: https://www.econbiz.de/10012429670
Persistent link: https://www.econbiz.de/10013448212
We develop metrics based on Shapley values for interpreting time-series forecasting models, including "black-box" models from machine learning. Our metrics are model agnostic, so that they are applicable to any model (linear or nonlinear, parametric or nonparametric). Two of the metrics,...
Persistent link: https://www.econbiz.de/10014278179
Based on evidence gathered from a newly built large macroeconomic data set for the UK, labeled UK-MD and comparable to similar datasets for the US and Canada, it seems the most promising avenue for forecasting during the pandemic is to allow for general forms of nonlinearity by using machine...
Persistent link: https://www.econbiz.de/10013243863
I develop Macroeconomic Random Forest (MRF), an algorithm adapting the canonical Machine Learning (ML) tool to flexibly model evolving parameters in a linear macro equation. Its main output, Generalized Time-Varying Parameters (GTVPs), is a versatile device nesting many popular nonlinearities...
Persistent link: https://www.econbiz.de/10012830408
Many problems plague the estimation of Phillips curves. Among them is the hurdle that the two key components, inflation expectations and the output gap, are both unobserved. Traditional remedies include creating reasonable proxies for the notable absentees or extracting them via some form of...
Persistent link: https://www.econbiz.de/10013294990
We develop metrics based on Shapley values for interpreting time-series forecasting models, including “black-box” models from machine learning. Our metrics are model agnostic, so that they are applicable to any model (linear or nonlinear, parametric or nonparametric). Two of the metrics,...
Persistent link: https://www.econbiz.de/10014238433