Showing 21 - 30 of 800
Persistent link: https://www.econbiz.de/10008934763
Persistent link: https://www.econbiz.de/10011448989
Persistent link: https://www.econbiz.de/10011450083
Persistent link: https://www.econbiz.de/10011413079
In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the...
Persistent link: https://www.econbiz.de/10013123188
In this paper we develop methods for estimation and forecasting in large time-varying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also...
Persistent link: https://www.econbiz.de/10013108928
We forecast quarterly US inflation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coefficients to change over time, but also allow for the entire forecasting model to change over time. We find that...
Persistent link: https://www.econbiz.de/10013151111
Macroeconomic practitioners frequently work with multivariate time series models such as VARs, factor augmented VARs as well as time-varying parameter versions of these models (including variants with multivariate stochastic volatility). These models have a large number of parameters and, thus,...
Persistent link: https://www.econbiz.de/10013153539
This paper considers how an investor in the foreign exchange market can exploit predictive information by means of flexible Bayesian inference. Using a variety of different vector autoregressive models, the investor is able, each period, to revise past predictive mistakes and learn about...
Persistent link: https://www.econbiz.de/10012897719
Macroeconomists are increasingly working with large Vector Autoregressions (VARs) where the number of parameters vastly exceeds the number of observations. Existing approaches either involve prior shrinkage or the use of factor methods. In this paper, we develop an alternative based on ideas...
Persistent link: https://www.econbiz.de/10012969692