Showing 1 - 10 of 670,569
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be...
Persistent link: https://www.econbiz.de/10011657377
This paper introduces a method which permits valid inference given a finite number of heterogeneous, correlated clusters. Many inference methods assume clusters are asymptotically independent or model dependence across clusters as a function of a distance metric. With panel data, these...
Persistent link: https://www.econbiz.de/10012969069
comprehensive survey of the (very large) literature. Instead, we bridge theory and practice by providing a thorough guide on what to … do and why, based on recently available econometric theory and simulation evidence. The paper includes an empirical …
Persistent link: https://www.econbiz.de/10012494221
We study two cluster-robust variance estimators (CRVEs) for regression models with clustering in two dimensions and give conditions under which t-statistics based on each of them yield asymptotically valid inferences. In particular, one of the CRVEs requires stronger assumptions about the nature...
Persistent link: https://www.econbiz.de/10012183373
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be...
Persistent link: https://www.econbiz.de/10011804820
For linear regression models with cross-section or panel data, it is natural to assume that the disturbances are clustered in two dimensions. However, the finite-sample properties of two-way cluster-robust tests and confidence intervals are often poor. We discuss several ways to improve...
Persistent link: https://www.econbiz.de/10015048741
Analyses of spatial or network data are now very common. Nevertheless, statistical inference is challenging since unobserved heterogeneity can be correlated across neighboring observational units. We develop an estimator for the variance-covariance matrix (VCV) of OLS and 2SLS that allows for...
Persistent link: https://www.econbiz.de/10012102134
In this paper we propose a variance estimator for the OLS estimator as well as for nonlinear estimators such as logit, probit and GMM. This variance estimator enables cluster-robust inference when there is two-way or multi-way clustering that is non-nested. The variance estimator extends the...
Persistent link: https://www.econbiz.de/10003878985
In this paper we survey methods to control for regression model error that is correlated within groups or clusters, but is uncorrelated across groups or clusters. Then failure to control for the clustering can lead to understatement of standard errors and overstatement of statistical...
Persistent link: https://www.econbiz.de/10008657385
In this paper we survey methods to control for regression model error that is correlated within groups or clusters, but is uncorrelated across groups or clusters. Then failure to control for the clustering can lead to understatement of standard errors and overstatement of statistical...
Persistent link: https://www.econbiz.de/10008657389